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Abstract Images of dispersed kerogen preparation are
analysed in order to detect palynomorphs of ellipti-

cal/spherical shape. This process consists of three au-

tomatic stages. Firstly, the background of the image

is segmented from the foreground. Secondly the fore-

ground particles are segmented into individual regions.
Finally a trained classifier is used to label a region as

either containing a palynomorph or containing other

material. Ten classifiers were trained and then tested

using a 10 times 10-fold cross validation. Typically the
number of regions in the image containing other ma-

terial exceeds by far the number of regions with paly-

nomorphs. Hence the problem of imbalanced classes was

addressed. Training data was sampled 10 different times

maintaining a balanced class distribution. Thus the ac-
curacy for each classifier was assessed on 1000 testing

sets. The logistic classifier was chosen and a certainty

threshold was selected by ROC curve analysis. The final

automatic recognition has accuracy of 88%, sensitivity
of 87% and specificity of 88%.

Keywords classification · microfossils · image

analysis · segmentation · palynomorph

1 Introduction

Microfossils are used extensively by the petroleum in-

dustry when exploring for oil and hydrocarbon palaeon-

tologists consider them to be one of their main tools.

When drilling for oil a fluid lubricates the drill bit and
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helps flush small pieces of rock from the bottom of the
drill hole, these small pieces are known as cuttings. Be-

cause microfossils are small (≤ 1mm) they are mostly

undamaged by the drilling process. A sample of cut-

tings contains three groups of microfossil, in this study

we are interested in the group known as palynomorphs.

Palynomorphs are important in hydrocarbon explo-

ration to construct biostratigraphies, chronostratigra-

phies, palaeoenvironmental determinations and matu-
rity assessments (1). These studies require a special-

ist to examine a slide containing a sample of cuttings.

The task of automating quantitative palynofacies stud-

ies has been of interest for over 20 years. In 1988 an

attempt to extract the outline of microfossils from re-
flected light images was made by (20). Later in 1989

a classification system to assist with identifying fossils

was implemented by (23). An expert system for visu-

ally identifying microfossils was constructed by (24) in
1992 and one of the most recent studies in automating

identification of palynofacies was conducted by (25) in

2005. Although much work has been done such tasks

are still considered a challenging problem. It would be

advantageous not only to an automatic system but also
a specialist, to devise a method which assists in locating

regions on the slide that contain more easily identifiable

palynomorphs.

An image of sedimentary organic matter is captured
at a resolution of 2272x1704 pixels through a digital

camera mounted on a microscope, an example of a typ-

ical image is shown in Figure 1. Microfossils on the slide

can be broadly classified into 3 groups: Kerogen1, paly-
nomorphs and amorphous material. It has been shown

that images of single particles can be recognised auto-

1 An organic matter that can yeild hydrocarbons upon
heating
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Fig. 1 Typical microscopy image of sedimentary organic
matter containing kerogen, palynomorphs and amorphous
material

matically with an accuracy of 87% (25). However for a

slide containing many particles it is necessary to first

locate and extract them individually. Previous work has

demonstrated that a stable segmentation and detection
system can be applied to the kerogen material with an

accuracy of 91% (21). Consequently our attention now

focuses on the detection of palynomorphs.

Palynomorphs are difficult to extract automatically,

firstly due to their haphazard arrangement on the slide,

secondly their structure is deformable and thirdly pal-

nomorphs can be semi-transparent. When there are mul-
tiple overlapping pieces it can be extremely difficult to

distinguish between them, even by human eye. There-

fore an unsupervised segmentation procedure is unlikely

to be perfect and under/over-segmentation of some par-

ticles will occur. By first identifying the regions contain-
ing a palynomorph, a classification system need only

be concerned with individual particles. These regions

will contain a single, complete, elliptic palynomorph

that has not been folded, torn, squashed etc. The main
goal of this system is to extract complete palynomorphs

from a slide containing overlapping microfossils. To the

best of the author’s knowledge, there is no other system

for accomplishing this task. Complete palynomorphs

are desirable because they can be further classified by
existing systems. However, such systems find it very

difficult to classify palynomorphs if they are visually

distorted. Distortions occur when the microfossils are

heavily overlapping and have folded over each other or
occluded one another. An expert system for recognising

microfossils under these types of conditions does not yet

exist.

It is our goal to disregard regions that contain kero-

gen and amorphous material. The type of palynomorphs

we are interested in are those with an elliptic/spherical

morphology. These types of palynomorph can come from

a viariety of classes but particularly acritarchs, spores
and pollen. Acritarchs was a term first introduced by

(14). There are a large amount of these types of paly-

nomorph preserved in the geological record. Hence they

are extremely usefull for quantitative biostratigraphic
and palaeobiological studies.

We have chosen to use the Centre Supported Seg-

mentation (CSS) alogirthm (9) as our method of seg-
mentation. This technique works well when segmenting

kerogen pieces and can be applied to any binary im-

age separated into foreground and background. It was

shown by (8; 9) that this method is simple to imple-

ment, insensitive to small changes in its parameters and
relatively quick to run compared to other automatic

methods such as Randomized Hough Transform for el-

lipse detection as proposed by (22). Ellipse detection

could be applied to an edge image of the slide however
the performance of such an approach was found to be

slow and inaccurate. This was due to a) most of the

palynomorphs on a slide are not perfect ellipses and b)

noise in the edge image. On the other hand the CSS

algorithm is robust against noise and changes in ob-
ject boundaries. The CSS algorithm can be controlled

to only segment regions which overlap up to a certain

limit. Heavily overlapping regions will not be segmented

and this reduces the number of segmented regions con-
taining visually distorted microfossils. Subsequent to

segmentation, the types of region fall into three cate-

gories: complete palynomorphs, non-palynomorphs or

clumps of heavily overlapping microfossils.

We propose to segment the foreground particles in

the image and identify those that contain a single com-

plete elliptic palynomorph. This is accomplished by train-
ing a classifier to distinguish between a region contain-

ing a single palynomorph and one containing othe mate-

rial (kerogen and heavily overlapping microfossils). The

novelty here is in automatically removing from the im-

age complete palynomorphs which can be further clas-
sified by machine, leaving recognition of more complex

regions to human expert. Furthermore such a system

can be used to improve segmentation results by filter-

ing out regions that need to be merged or further seg-
mented.

The rest of the paper is split into four sections. The

first section describes the methods and analysis used
for image pre-processing and classification. The second

section compares ten state of the art classifiers and the

third section demonstrates the results of the logistic
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classifier on our images. In the fourth section we sum-

marise and discuss future work.

2 Methods and analysis

The microscopy image of a sieved rock sample contains

a dispersed arrangement of kerogen and palynomorph
material. It is unlikely that each palynomorph will ap-

pear disconnected and unobstructed. In most cases pa-

lynomorphs will be touched and occluded by other ma-

terial, even folded, squashed or torn. A segmentation

technique can be applied to split the image into regions
with the hope that each region contains a separate pa-

lynomorph. A classifier can be applied to each region

to determine whether it contains a single complete pa-

lynomorph or something in which we have no interest.
This section will describe the techniques used to accom-

plish segmentation and classification. Methods used for

classification analysis are also discussed.

2.1 Pre-processing

2.1.1 Background segmentation

The first step is to correct the uneven light intensity

across the image which ensures a consistency in colour

for all objects on the slide. In microscopy images the

main cause of uneven lighting will be an inherent prob-
lem i.e. the lens allows more light to hit the centre of the

image than its edges, this is known as vignetting. Also

in transmitted microscopy a bulb is placed behind the

slide, this will amplify the light intensity at the centre
of the image. The overall effect is a drop off in light in-

tensity from the centre of the image towards the edges.

The corrective procedure we chose (10) fits horizontal

and vertical parabolas to the background intensities of

the greyscale image shown in Figure 2 (a) . By combing
these parabolas a model of the background is formed.

The image is corrected by this model to even out the

background.

In the next step we segment all foreground objects

into individual regions. First the background is seg-

mented from the foreground by thresholding the cor-

rected greyscale image. The image histogram typically
has two pronounced peaks corresponding to background

and foreground. The threshold value is found by locat-

ing the global minimum between the two peaks. The

image is converted into black and white. The black re-
gions are the foreground containing all palynomorphs

and the white regions are the background (Figure 2

(b)).

2.1.2 Microfossil segmentation

A recently proposed algorithm known as Centre Sup-

ported Segmentation (CSS) can segment individual mi-

crofossils based upon this binary image. The foreground

regions will either contain a single object or a collection
of touching and overlapping pieces. CSS finds the cen-

tres of all objects which could have formed a region.

For each centre an overlap value d ∈ [0, 1] is found.

This expresses the amount of overlapping caused by an

object at that centre. The degree of overlap increases
as d increases, for example a separate object has d = 0

and a completely occluded object has d = 1. Centres

are disregarded if they have overlap greater than 0.5,

this reduces the amount of over-segmentation. Classifi-
cation of kerogen material with respect to the overlap

value of the CSS algorithm was found to be stable even

with dramatic changes in d (11). We recommend using

a value of 0.5. Particles that are too small can be elimi-

nated, (25) suggests removing particles with a diameter
less than 14µm. The result of this can be seen in Figure

2 (c).

The CSS algorithm was originally designed to seg-
ment touching kerogen pieces. Under transmitted light

microscopy kerogen will appear relatively dark. The

only visual cue to determine the position of individ-

ual pieces is the silhouette of the material. Here we are

applying CSS to the silhouette of all foreground mate-
rial including kerogen and amorphous matter. A paly-

nomorph region will contain a single complete elliptic

palynomorph. An “other” region will contain a non-

palynomorph such as kerogen, amorphous material or
more than one palynomorph crammed together. Exam-

ples of these types of regions are shown in Figure 3.

Therefore we expect the set of segmented regions found

using CSS to contain both palynomorph and “other”

regions.

2.2 Classification

Classifiers are a mapping from an input space consisting

of object features to an output space of discrete labels.

In our case the classification is learnt from training data
consisting of segmented objects which have been hand

labelled. An object is represented by a vector of feature

values extracted from each region. We have used 32

features from four groups describing colour, shape, size
and texture. The features are general descriptions for

any type of region and are not specific to palynomorphs.

Each feature is explained in Table 1.
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(a)

(b) (c)

Fig. 2 Demonstrating the pre-processing steps before classification. (a) Image converted to grayscale. (b) Fore-
ground/background segmentation subsequent to image normalisation using the background estimate. (c) Segmentation of
microfossils using CSS algorithm.

Crammed
palynomorphs

Single complete
palynomorph

Non−palynomorph

Fig. 3 Final segmentation annotated to show the types of segmented regions
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Table 1 Groups of features

Type Feature Notation Explanation
Colour mean red

mean blue
mean green
mean gray

Size inner radius ri Radius of the largest circle contained entirely within the object
outer radius ro Radius of the smallest circle which contains the entire object
diameter d The maximum distance between 2 contour pixels
perimeter p Number of pixels on the border between object and background
circle difference ro − ri Difference between the outer and inner radii
area a Total number of pixels comprising the object
distance δ Mean distance from centre of gravity to all contour pixels

Texture entropy Entropy of the grey-level histogram taken as a pdf
anisotropy Symmetry of the grey-level histogram about its median
correlation Correlation between grey level intensity of neighbouring pixels
homogeniety Homogeniety of neighbouring pixels in the grey level image
contrast Contrast of neighbouring pixels in the grey level image
energy Energy of neighbouring pixels in the grey level image
rim variability Variance of the gray level intensity in a “rim” of width ri/5

Shape anisometry e+/e
−

Ratio of the lengths of the major and minor elliptic semi-axes
eccentricity d

−
/d Ratio of the length of the minor axis of the object to d

rectangularity a/ab Ratio of object area to the area of smallest bounding rectangle

bulkiness
π(e+)(e

−
)

a
Ratio of the areas of a corresponding ellipse and the object

convexity a/ac Ratio of the object’s area to its convex area
variance x Variance across x-axis with respect to centre of gravity
variance y Variance across y-axis with respect to centre of gravity
covariance
compactness 4πa/p2 Ratio of the area to that of a circle with the same perimeter
sigma σ Standard deviation of distances from centre of gravity to contour
roundness 1 − σ/δ

sides 1.41
(

δ

σ

)0.4724
Number of pieces of a regular polygon

equant/lath ri/d Equant/lath ratio

structure factor
π(e+)2

a
− 1 anisometry×bulkiness - 1

2.2.1 Data classifiers

We have chosen to test ten well known classifiers, all

have been shown to achieve a good standard across a
diverse range of datasets. The classifiers chosen are lo-

gisitc (19), bagging (6), support vector machines (SVM)

(12), multilayer perceptron (3), random forest (7), log-

itboost (17), adaboost (16), decision tree (5), nearest

neighbour (13) and naive bayes (18). All classifiers are
implemented in Weka (27) using their default parame-

ter settings.2

2.2.2 Cross-validation

Cross validation is used to determine the accuracy of a

classifier. The dataset is split into two sections called

the training and testing set. We train the classifiers

on the training set and then calculate its accuracy on
the testing set. K-fold cross-validation partitions the

dataset into K subsamples. One subsample is used for

testing and the other K − 1 are used for training. This

process is carried out K times where each of the K

subsamples are used exactly once for testing. At this

point the K accuracies can then be averaged. How-

ever, to remove a bias towards the initial partitioning

2 Weka is a free software environment for machine learning
and data mining. http://www.cs.waikato.ac.nz/ml/weka/

of the dataset the whole process is repeated N times

each time using a different partioning. The final accu-

racy obtained is found by averaging the NxK results.
In this study we choose to use 10-fold cross-validation

10 times.

2.2.3 Feature selection

A subset of the 32 features can be chosen to train the
classifier and will hopefully improve classification accu-

racy. A subset of features is selected using a greedy step-

wise approach within a 10-fold cross-validation. The

method begins by using the full set of 32 features and

removing a feature if it reduces the classification accu-
racy. Each feature is then ranked depending on when

it was removed. For example, if feature A is removed

first then it will be ranked 1 and if feature B is removed

last it will be ranked 32. An average of the 10 ranks for
each feature, obtained from the 10 folds, is used as a

measure of feature importance. Feature selection also

serves an additional purpose, which is to guard against

possible overtraining.

2.2.4 Class imbalance

In some cases the dataset contains many more samples

of one class than the other. The trivial (largest prior)
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classifer lables all samples according to the most popu-

lar class in the training set. Although reasonable accu-

racies can be achieved, such a classifier would be useless.

Problems like this are termed imbalanced. Three main

approaches have been employed to solve imbalanced
problems (2): i) we can assign a cost to classification

errors. ii) the discrimination process can be internally

biased to account for the class imbalance. iii) we can

sample from the training set to balance the class distri-
bution by either over-sampling from the minor class or

under sampling from the major class. Another alterna-

tive to is to sample from both classes with replacement

maintaining a balanced class distribution. In this study,

we choose to use the alternative approach.

2.2.5 ROC analysis

The posterior probability of the palynomorph class can

be estimated from the output of the classifier. We use

the inbuilt functions in Weka to estimate the posterior

probabilities. The classification output can be decided
by thresholding the posterior probability that a given

fossil is a true palynomorph, we call this the certainty

threshold (CT). A ROC space is formed by two axes.

The x axis is (1-specificity) and the y axis is the sensi-
tivity. A perfect classifier will be at point (0, 1) in this

space. Random classification lies on the diagonal line

running from the point (0, 0) to the point (1, 1). Points

above this line are better than a random guess. For

each CT we can calculate the sensitivity and specificity
of the results and plot a point in this space. In this way

a curve is formed known as a ROC curve (15). Classifier

performance can be measured as the total area under

this curve (AUC), the closer this measure is to 1 the
better the classifier. The best CT is found by locating

the point on the ROC curve closest to (0, 1).

3 Experimental results

The pre-processing step is applied to seven microscopy

images containing palynofacies. In total 1139 objects
are extracted. Each region is hand labelled as a pa-

lynomorph if it consists of a single palynomorph with

an elliptic shape otherwise it is labelled as “other”. To

achieve manual classification the palynofacies are ini-

tially segmented using the CSS algorithm. A human
expert is then able to sit in front of a monitor and se-

lect the regions segmented by the CSS algorithm which

they deem to be complete elliptic palynomorphs. This

data is stored and a ground truth is obtained. For each
region the 32 features from Table 1 are extracted and a

dataset is formed. We will use this to train and compare

classifier accuracy and AUC.

The dataset contained 142 palynomorph objects and

997 classed as “other”. Due to class imbalance a boot-

strap sample of the training data is drawn, so that the

classes have approximately 50/50 representation. This

type of sampling was also done using Weka. Accuracy
is calculated by performing a 10-fold cross validation

10 times. To remove a bias towards the training sample

we repeated the bootstrap sampling 10 times. Classifi-

cation accuracy and AUC is therefore found as an aver-
age of 1000 testing sets of size 113 objects each. A 95%

confidence interval (CI) is retrieved by finding the 26th

and 975th largest accuracy. We trialled four bootstrap

sample sizes: 30%, 50%, 70% and 90% of the training

data. It was found that higher accuracies and AUC’s
were achieved when a sample size of 90% is used.

For a sample size of 90%, the accuracies of each

classifier together with their CI’s are shown in Table 2,

AUC’s are shown in Table 3. The CI’s are heavily over-

lapping indicating no clear winner between the various
classifiers. AUC values indicate the logisitc classifier to

be the best. We have chosen to use the logistic classifier

due to its simplicity, high classification accuracy, high

AUC and speed of training/testing.

Table 2 Accuracy and 95% CI’s of the ten classifiers using
a 10 times 10-fold cross-validation.

Classifier Accuracy (%) 95% CI (%)
Logisitic 88.31 (82.45, 92.11)
Bagging 90.77 (85.09, 94.74)
SVM 85.33 (78.94, 92.11)
MLP 88.24 (81.58, 93.86)
Random Forest 92.89 (88.59, 93.86)
LogitBoost 88.04 (81.58, 93.86)
AdaBoost 85.29 (77.19, 92.98)
Decision Tree 88.24 (81.58, 92.11)
Nearest Neighbour 88.49 (83.33, 92.11)
Naive Bayes 75.74 (67.54, 84.96)

Table 3 AUC’s of the ten classifiers using a 10 times 10-fold
cross-validation.

Classifier AUC
Logisitic 0.946
Bagging 0.934
SVM 0.938
MLP 0.873
Random Forest 0.933
LogitBoost 0.937
AdaBoost 0.926
Decision Tree 0.822
Nearest Neighbour 0.845
Naive Bayes 0.824
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4 Classification using the Logistic Classifier

Let x be the region to be classified, where x = [x1, . . .

, xn]T ∈ <n. Let w1, . . . , wc be the class labels, P (wi)

be the prior probabilities and P (wi|x) be the posterior

probabilities for the classes, i = 1, . . . , c. The logistic
classifier relies on the assumption that the log-odds of

the posterior probabilities for any two classes can be

approximated as a linear function. Without loss of gen-

erality, we can pick class wc and fix its discriminant
function to be gc(x) = 0 for any x. The remaining c−1

discriminant functions are calculated as

gi(x) = log
P (wi|x)

P (wc|x)

= βi0 +

n
∑

j=1

βijxj , i = 1, . . . , c − 1,

where βij , are the coefficients obtained through train-
ing the classifier. The training is done by the Itera-

tive Reweighted Least Squares (IRLS) method using

the Newton-Raphson updates (4). Let g(x) be the out-

put of the discriminant function produced by the logis-
tic classifier. An estimate of the posterior probability

P (palynomorph|x) is 1
1+exp(−g(x)) .

The greedy stepwise feature selection method is per-

formed and the top 10 ranked features are selected.
These features are listed in table 4 along with their

average ranks. Classification using the logistic classifier

will be conducted using only these 10 features.

Because of the class imbalance, the trivial (largest

prior) classifier has specificity 100% and sensitivity 0%,

while its accuracy is a reasonable 87%. By applying a

threshold to the posterior probability we will be able to

adjust the sensitivity and specificity until a good com-
promise is found. We evaluate the performance using

ROC analysis.

In this study the CT was increased from 0 to 1 in
steps of 0.001. The specificity and sensitivity of the lo-

gistic classifier was found at each step as an average of

1000 testing sets (in the same way we calculated the ac-

curacy). This yields 1001 points in ROC space, joining
the points forms a ROC curve shown in Figure 4. The

best CT was found at 0.54 with a specificity of 88%,

sensitivity of 87% and an accuracy of 88%.

4.1 Example

For demonstration purposes we will train the classifier

on six of our images. The seventh image will be used to
test the classifier and display the objects labelled as a

palynomorph. The training set is re-sampled to attain

a balanced class distribution. The logistic classifier is

Table 4 Top 10 features ranked by the greedy stepwise selec-
tion procedure using the logistic classifier (average of 10-fold
cross-validation).

Feature Rank ± std
distance 30.20 ± 0.87
covariance 24.70 ± 6.34
eccentricity 24.40 ± 5.62
outter radius 24.20 ± 7.59
mean red 24.00 ± 6.28
mean blue 23.60 ± 4.72
mean green 22.00 ± 7.60
rectangularity 21.60 ± 6.55
anisotropy 21.50 ± 8.64
variance y 21.40 ± 10.50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
en

si
tiv
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1 − Specificity

Certainty threshold = 0.54

Certainty
threshold
increases
along curve

Fig. 4 ROC curve of logisitic classifier with respect to
changes in the CT

trained and then tested on the segmented image shown

in Figure 3 using the 10 features listed in table 4. The
ROC analysis is performed and the best CT was found

to be 0.53. The accuracy is 91% with a sensitivity of

94% and specificity of 90%. The regions hand labelled

as palynomorph by human expert are shown in Figure
5 highlighted with a white border. The results of the

logistic classifier are illustrated in Figure 6 and can be

visually compared with the human expert.

The 11 non-palynomorph regions that were labelled

as palynomorph by the logistic classifier contained mainly

amorphous material. Because the amorphous material

has a rough appearance the number of false positives

could be reduced by adding more specific texture fea-
tures. Only two regions hand labelled as palynomorph

were undetected by the classifier.

5 Conclusion

Automatic classification of single complete palynomorphs

can be achieved with high accuracy. However to ob-

tain a single palynomorph from the image of a slide
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Fig. 5 Original image displaying regions labelled by human expert as single elliptic palynomorphs. Regions are highlighted
with a white border.

Fig. 6 Original image displaying regions labelled by logistic classifier as single elliptic palynomorphs. Regions are highlighted
with a white border.
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containing highly irregular, overlapping kerogen pieces

and other debris requires an advanced automatic seg-

mentation technique. Such techniques are not 100% ac-

curate and some regions will contain more than one

palynomorph or a non-palynomorph. The experiments
conducted here have shown that it is possible to auto-

matically locate regions in an image that contain only

palynomorphs with an accuracy of 88%. The system

consists of three steps: 1) a pre-processing of the orig-
inal image to correct background intensity levels and

segment the background from the foreground. 2) Image

segmentation using the CSS algorithm. 3) Classification

of segmented regions using the logistic classifier.

Having identified regions containing single complete
palynomorphs, a second classifier can be trained to iden-

tify their subgroup, species etc. For example the neural

network constructed by (26) can now be applied to an

image of a microscope slide containing many microfos-
sils rather than images of a single complete microfossil.

Avenues for improvement consist of increasing clas-

sification accuracy and performance by tuning the pa-

rameters of the classification algorithms.

Future work will focus firstly on the idea of improv-
ing the segmentation of palynomorphs using a trained

classifier. For instance when automatically segmenting

a set of images the usual approach is to fix the pa-

rameters of the segmentation algorithm and then apply
it to all images. The preferred approach would be to

adjust these parameters for each image until the best

segmentation is found. The best segmentation in our

case would be one that maximises the total number of

segmented palynomorphs. By using the trained logistic
classifier to count the number of palynomorph regions

it may be possible to automatically tune the parame-

ters of the CSS algorithm until a maximum number of

palynomorphs have been detected. Secondly, we would
also like to develop a system for automatically classify-

ing visually distorted microfossils and segmenting them

from the heavily overlapping regions.
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