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Abstract

Identification of fossil material under a microscope is the basis of micropalentology. Our task is to locate and count the

pieces of inertinite and vitrinite in images of sieve sampled rock. The classical watershed algorithm oversegments the

objects because of their irregular shapes. In this paper we propose a method for locating multiple objects in a black and

white image while accounting for possible overlapping or touching. The method, called Centre Supported Segmentation

(CSS), eliminates oversegmentation and is robust against differences in size and shape of the objects.
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1. Introduction

Accurate recognition of biological remains found
in palaeosediments is the basis of palynology and
micropaleontology and this underpins the interpre-
tation of palaeoenvironment, chronostratigraphy
and much more. The fundamental importance of
accurate recognition of fossil material under the
microscope has spurred considerable effort into
automating the task. In the last 25 years significant
developments have been made in recognising
specific types of fossil material under ideal condi-
tions (England et al., 1979; France et al., 2000;
Weller et al., 2005).
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Nevertheless, obtaining statistically significant,
unbiased and reproducible results from automated
analysis of microscope images is still regarded as a
challenge. Even in the unrealistically simple case of
individual, whole, undeformed specimens, difficul-
ties arise from the diversity of the species to be
recognised, the variability in the image acquisition
techniques as well as the subjectivity of the visual
analysis (Bollmann et al., 2004).

Starting with a mixture of objects arranged
randomly in an image, we seek to create a collection
of individual specimens. Counting objects in an
image is straightforward for disconnected objects or
objects of a particular known shape. However,
counting connected or overlapping objects of
arbitrary shape can prove difficult. The standard
approach to this task consists of two steps. First, the
image is segmented into background and fore-
ground so that the objects of interest appear as a
black foreground. Second, the foreground is further
segmented to identify separate objects.
Elsevier Ltd. All rights reserved.
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Fig. 1. Microscope image of palynofacies. Dark objects are

referred to as ‘‘kerogen’’.
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In this paper we expose some deficiencies of the
current object-segmentation methods (e.g., their
tendency to oversegment and the need for
a subjective placement of markers in the image).
We propose a new segmentation method whose pre-
set parameter corresponds to the human perception
of overlap and does not depend on the image
resolution.

The rest of the paper is organised as follows.
Section 2 gives more details about the type of
palynological images considered in this study and
the objects within such images. Section 3 briefly
explains the pre-processing of the image to segment
out the background. Section 4 presents an overview
of existing object-segmentation methods and high-
lights the problems arising. Section 5 introduces our
algorithm for finding object centres, called Centre
Support Segmentation (CSS). The results of an
experiment are presented in Section 6. Section 7
offers conclusions and outlines future research
directions.

2. Challenges of object segmentation in images of

palymnomorphs

Finding roughly elliptical cells or pollen spores in
an image is considerably easier than finding objects
in palynomorph images. The material being ana-
lysed has arisen from biological remains. These
remains are subjected to initial distress at time of
deposition and subsequently altered and deformed
by burial stresses and tectonic deformation.
Furthermore the remains are then retrieved from
their current position deep in the Earth by
techniques which were not designed primarily for
optimum sample preservation. Finally, the pro-
cessed material is arranged haphazardly on a slide,
with both material of interest and other materials
overlapping and partially hiding each other.

Fig. 1 shows a typical image of an assemblage of
objects retrieved by sieve analysis from a sediment.
The material consists of light or transparent objects
(palynomorphs and amorphous organic matter) and
opaque humic kerogen which can be subdivided
into inertinite and vitrinite. The dark objects have
irregular shapes and different sizes. Sometimes
small dark objects appear within light objects. The
light objects, on the other hand, vary in texture,
intensity and transparency. Up to now, human
intervention has been assumed in detecting the
objects in the image. At the next stage, auto-
matic classification of the cropped objects can be
attempted based on expert knowledge, extraction of
salient features and various machine learning and
pattern recognition methods (Weller et al., 2005).
Our goal in this study is to devise an algorithm for
automatic identification of dark objects in the
image. Such an algorithm will be a step towards a
completely automatic classification system for
palynological images.

In addition to the task facing the geologist,
the image analysis has to address the reality that
each slide is seen under different conditions,
e.g., variations in light intensity, colour balance,
background, etc. These variations need to be
accounted for in order to create conditions which
are sufficiently similar or standard for the algo-
rithms to be usable and the results to be statistically
valid. Only then can the large body of work on
recognition of individual specimens be made com-
mercially useful.

3. Image pre-processing to segment the kerogen

material as foreground

The first stage of our long-term project is to
extract ‘‘dark’’ objects that correspond to kerogen
material. These objects will be later classified into
inertinite and vitrinite. Hence the background/
foreground segmentation must leave only the
kerogen material as the foreground while labelling
all the light or transparent fossils and amorphous
material in the image as background. Below we
include some details of our background segmenta-
tion algorithm. While this part is not directly related
to the proposed Centre Support Segmentation
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(CSS) method, we include it here to enable
reproducibility of the results.

The common procedure for background removal
is to apply an intensity threshold on the grey-scale
image (Gonzalez et al., 2004; Bollmann et al., 2004).
Global thresholding may produce a false fore-
ground containing some of the less illuminated
parts of the image together with all their content. To
avoid this, background illumination should be
equalised. An empty slide can be stored and used
for background correction (Weller et al., 2005). The
problem with the empty-slide method is that it is
specific for the current settings of the microscope
and will not produce accurate results in images of a
different origin. Further methods include blurring
and normalisation (Zawada, 2003, SYSTAT1) as
well as fitting a two-dimensional quadratic function.

Here we use a recently proposed approach for
illumination correction in microscope images
(Charles et al., 2008) based upon fitting parabolas
in horizontal and vertical ‘‘stripes’’ of the image. The
grey level histogram of the corrected image has two
distinct peaks, the left peak corresponding to the
inertinite and vitrinite material and the right peak
representing everything else. A segmentation thresh-
old is then applied, chosen to be the intensity
corresponding to the minimum between the peaks.
This thresholding will result in a black and white
image (binary image), black regions representing the
pieces of interest to be segmented into objects that
will be further labelled as inertinite, vitrinite or other.

4. Object-segmentation methods

Extracting objects from the image is not a trivial
segmentation task. Typically, centre-based segmen-
tation algorithms such as centroidal Voronoi
tessellation (Du et al., 2006) and mean-shift algo-
rithms (Comaniciu and Meer, 1997) seek to parti-
tion the image into homogenous regions. In our
case, the image is already segmented into black and
white, and the only guide to splitting the connected
components into ‘‘objects’’ is the shape of the
silhouette.

4.1. The classical watershed algorithm

The watershed transform (Vincent and Soille,
1991) can be used to identify separate objects on the
1SYSTAT Software Inc., 2002. Sigmascan http://www.systat.

com/products/SigmaScan/.
black and white image. First, a distance transform is
applied (Borgefors, 1986) to the image (a faster
approximation, called chamfer distance transform,
can be used instead Butt and Maragos, 1998). The
distance function DðpÞ for a pixel p gives the
Euclidean distance to the nearest white pixel.
One can consider it as a surface with DðpÞ being
the height for pixel p. The watershed transform is
applied to �DðpÞ. Its elegant interpretation is that
the troughs are filled with ‘‘water’’ in order to find
the watershed ridge lines. These lines partition the
image into regions so that one object is contained
within each region. This process is very effective for
segmenting touching objects with circular shapes.
However, rectangular objects cause difficulties and
oversegmentation occurs due to the increased
number of regional minima in the distance trans-
form function. The problem in using the watershed
method for detecting dark objects in palynomorph
images is illustrated in Fig. 2. The number of
regions the watershed method finds in the image is
56 while we are looking for just three objects.

4.2. Marker-based methods to prevent

oversegmentaion

The oversegmentation of the watershed algorithm
can be reduced by finding markers for each object
and only allowing water to fill from the markers
position. This is known as marker-controlled
watershed segmentation (Vincent, 1993; Beucher,
1992; Landini and Othman, 2003). Provided each
object only contains one marker, the segmentation
will be near perfect. However, too few or two many
markers will result in under or over-segmentation,
respectively. One possible solution is to place the
markers manually. However, this defeats the pur-
pose of an automatic system for object extraction
and classification. An alternative to the manual
approach is to identify specific features found
inside individual objects (Clocksin, 2003; Lindblad
Fig. 2. (a) Cropped subimage from Fig. 1, (b) distance function

as a surface and (c) result of watershed algorithm applied to

negative distance function (56 regions identified).

http://www.systat.com/products/SigmaScan/
http://www.systat.com/products/SigmaScan/
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One long object

Two overlapping circles

Fig. 3. Image showing three objects, one long wave and two

overlapping circles.

2The images and the Matlab code are available on the IAMG

server www.iamg.org.
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et al., 2003). For example, when segmenting images
of overlapping cells an ideal marker would be a
single feature that presents itself in the centre of
each cell. Locating the position of a cell nucleus
would provide us with a perfect marker system.

Another possibility to identify centres is by using
grey-scale morphology. The extended h-maxima
transform (Soille, 2003) is an example of this
approach. It is widely used in applications for
separating touching objects of similar size in grey-
scale images (Malpica et al., 1997; Wahlby et al.,
2004). The transform can be applied to the distance
function of the binary image or to the original grey-
scale image itself. The method will filter out all
maxima whose heights are smaller than the pre-
defined threshold h. A low value of h will result in
many markers and a high value will produce only a
few markers. This transform is dependent upon the
scale of the binary image. For example, if an image
is rescaled, different numbers of objects may be
found for a fixed value of h, even though the same
number of objects are present in the image. The best
value for h is usually determined by evaluating by
eye the segmentation on a small sample of the
images of interest. This value is then fixed when
segmenting the other images.

While the extended h-maxima transform has been
very successful for separating touching objects of
similar size in grey-scale images, this may not be the
case in images containing objects of various sizes
and shapes. Fig. 3 shows an example of an image
containing three objects altogether: a long wavy
object and two overlapping circles. Suppose that the
extended h-maxima transform is applied to the
distance function of the image. The possible range
of h is ½0; 72:1�. To detect the three objects at the
given image resolution, h must be between 3.8 and
7.6. For all values 11:4ohp45:5, only two objects
will be detected. The overlapping circles will not be
marked for values 49:3ohp72:1 resulting in the
segmentation of one object.

Since palynomorph images will contain both
large and small objects of different shapes, a more
accurate segmentation method is required.

5. Centre Supported Segmentation (CSS)

We propose an alternative segmentation method
based on an intuitive, scale-independent overlap

parameter. This method will eliminate oversegmen-
tation and successfully segment both circular and
elongated objects. Centre Supported Segmentation
(CSS)2 is based on automatic identification of a
centre point for each object. CSS is applied on the
black and white image where the black foreground
is the object to be segmented. The result from CSS is
a set C of object centres. The centre of an object is
needed for several reasons: (1) counting the number
of objects, (2) viewing an object by moving the
scanning camera to the centre and (3) cropping the
object for further analysis and classification.

Definition. Any pixel p with the largest distance
DðpÞ within the object is called a centre of this
object.

For example, the centre of a filled-in circle will be
its geometrical centre. However, a doughnut-shaped
object will have infinitely many centres, none of
which will be the geometrical centre of the figure.

5.1. Finding the centres

A pixel p with coordinates ðx; yÞ has an eight-

neighbourhood consisting of the set N8ðpÞ ¼ fðxþ

1; yÞ; ðx�1; yÞ; ðx; yþ1Þ; ðx; y� 1Þ; ðxþ 1; y� 1Þ; ðxþ
1; yþ 1Þ; ðx� 1; y� 1Þ; ðx� 1; yþ 1Þg. Two pixels p

and q are eight-connected if there exists a path of
pixels between p and q where each pixel in the path
is of the same intensity and in the eight-neighbour-
hood of the next pixel. A set of pixels that are all
connected to one another is called a connected

component. CSS is applied to the distance function

http://www.iamg.org
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of the binary image. It first identifies the centres of
all possible objects and then filters out the centres
which are likely to be noise. The first stage of the
algorithm is explained in Table 1.

Two lists are created: the list C of centres and the
list V of their merging heights. List C is constructed
in the following way. Initially C is empty. Suppose
that m ¼ Dðq1Þ ¼ maxp DðpÞ is the unique max-
imum of D across the whole image. Pixel q1 is taken
to be the first centre in C. This thresholding will
define a black and white image B, containing one
black point at q1. Consider as an example the image
in Fig. 4(a). The boxes delineated by the grid are the
Table 1

The Centre Supported Segmentation (CSS) algorithm

CENTRE SUPPORTED SEGMENTATION (CSS) ALGORITHM: C AND V

(1) Given is a binary image B. Initialise C ¼ ;, V

(2) Find the distance image D for B and sort all th

(3) For i ¼ 1 : T

(a) Find binary image Bi by thresholding D at

(b) For j ¼ 1 : jCj (each centre in C)

(i) find the connected component Zj

(ii) if Zj has no intersection with any of Z1; .
(c) Remove all connected components Z1; . . . ;Z
(d) Find the remaining connected components

arg maxp2Zi;t DðpÞ as the centre of this component

(e) Augment C and V

C C [ fqi;1; . . . ; qi;kg; V  V [ fm|ffl
(4) Return C and V

Stage 1: obtaining centres C and merging heights V.
aNote: As each possible distance is checked, the connected componen

will all be exactly at height mi . These may be single points or clusters of p

centre of the component.

Fig. 4. Example of a 9-by-9 binary imag
pixels in the image. Fig. 4(b) displays the distance
function for the image. All white pixels have
DðpÞ ¼ 0. For this example, the maximum of the
distance function is 3, found at pixel q1 ¼ ð6; 4Þ.
Then C is updated by C  C [ fð6; 4Þg.

By thresholding D at m, all pixels p where
DðpÞXm are set to black and the rest are set to
white. For m ¼ Dðq1Þ, there will be a single black
dot at q1. Fig. 5(a) shows this first step. The black
pixel is q1.

The next maximum height, m0 ¼ maxpaq1 DðpÞ is
identified. The new black and white image B0

resulting from the thresholding with m0 will contain
¼ ;

e distinct distance values in descending order: m14m24 � � �4mT

mi

. . ;Zj�1, then set vj ¼ mi

jCj from Bi

in Bi, e.g., Zi;1; . . . ;Zi;k. For each component, find qi;t ¼

, t ¼ 1; . . . ; ka

i; . . . ;migfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

ts at distance mi, after removing all connected components at (3c)

oints at the same height. Thus any point from Zi;t can serve as the

e (a) and its distance function (b).
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more black points than the image thresholded at
m4m0, including points around pixel q1. Fig. 5(b)
displays B0 found at m ¼ 2, the next lower value of
the distance function D.

Since the object with centre q1 is already
accounted for, we remove this connected compo-
nent from B0. The component to be removed from
B0 is coloured light grey in Fig. 5(b). Let Z be the set
of pixels of a connected component in the remaining
B0. Denote the centre of the object represented by Z

by q2, where Dðq2Þ ¼ maxp DðpÞ;8p 2 Z. The new
centres are appended to the current C. In our
example C ¼ fð6; 4Þ; ð3; 7Þg. A subsequent threshold
m00om0 is applied to produce image B00 from D, and
all connected components with centres in C are
removed from B00 in the order they were stored in C.
The remaining connected components are used to
find new centres, and so on. Fig. 5(c) shows the
third step where B00 is obtained by thresholding at
m00 ¼ 1:41. There is one connected component in
this image, which will be removed because it
contains the first entry in the set of centres C, q1.
Finally, Fig. 5(d) shows B000 with m000 ¼ 1. Again,
only one connected component is found and
subsequently removed.

If we apply this process to the image in Fig. 2(a),
56 centres will be found, each one located in its own
separate region defined by the watershed algorithm
(subplot (c)). As with the watershed method, small
shape irregularities on the periphery of the object
will result in a jagged peak of the distance function
with many local maxima of similar heights. Each
little spike will generate a centre.

To eliminate oversegmentation we propose the
following addition to the algorithm. A parameter
called merging height is attached to each centre. The
merging height of centre qi, denoted vi, (vipDðqiÞ),
is the lowest height at which qi defines a connected
component disjoined from any connected compo-
nents of qj such that DðqjÞ4DðqiÞ. For any value
lower than vi, qi and another centre at a larger D
Fig. 5. Finding centres using CSS. Two centres will be stored in C, q
will share a connected component. Figuratively
speaking, the object of smaller size (smaller peak
DðqiÞ) is eclipsed by an object of a bigger size
(DðqjÞ4DðqiÞ). For the example in Figs. 4 and 5, the
merging height of q1 is v1 ¼ 0, and the merging
height of q2 is v2 ¼ 2 because this is the lowest
height where the component of q2 is separate from
the component containing q1.

The merging heights of centres of large objects
will be low even if they overlap with smaller objects.
The merging height of large objects will be updated
until they are joined to a larger object. On the other
hand, centres of smaller objects corresponding to
noise at the peak will have high merging heights.
The centres with large vi will be candidates for
elimination.

The algorithm for identifying the centres C and
their merging heights V is detailed in Table 1.

In Stage 2 of the CSS algorithm redundant
centres are eliminated. A threshold s can be applied
to account for the minimum allowable size of an
object. All objects with centres q, such that DðqÞos,
are discarded. If the algorithm is run with s ¼ 0, it
will find all the specs in the image as objects of
interest. The value of s can be estimated by eye or
can be learned from a sample of training images
where the objects of interest have been pre-labelled
by hand. Weller et al. (2005) propose an empirical
threshold of 14mm.

5.2. The overlap parameter

The cropped image in Fig. 2(a) looks like three
touching objects, however, it may also be a genuine
set of 56 tightly packed objects. We introduce a
parameter d to determine which centres need to be
removed. The degree of overlap is defined using two
intersecting circles as demonstrated in Fig. 6(a) and
is measured with respect to the smaller circle. If
the two circles are of the same size, each of the
two can be chosen. The overlap value is defined by
1 ¼ ð6; 2Þ at threshold m ¼ 3 and q2 ¼ ð3; 7Þ at threshold m ¼ 2.
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the two intersection points A and B. Denote by ti

the minimum distance from the mid-point of the
segment AB to the edge of the smaller circle. The
overlap is defined as the ratio of ti to the radius of
the circle, DðqiÞ. The length ti is found using vi, the
merging height of the centre qi. The merging height
is half the length of AB and is shown as vi in the

diagram. Since ti ¼ DðqiÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðqiÞ

2
� v2i

q
, the de-

gree of overlap for a centre qi is

OðqiÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðvi=DðqiÞÞ

2
q

.

By definition DðqiÞ4vi and so OðqiÞ 2 ½0; 1Þ. A
centre qi with overlap OðqiÞ ¼ 0 means that the
object is isolated. As the overlap approaches 1, the
object is increasingly covered by a larger item. The
overlap of two circles is demonstrated in Fig. 6(b).
The small circle is increasingly covered by the larger
circle. The overlap value OðqÞ is also shown. As
soon as the two circles merge so that qi ¼ ti, the CSS
algorithm will continue to recognise one object, in
this case we have complete overlap.

5.3. Filtering the centres using the overlap

To remove centres from C we set a limit d on the
amount of overlap such that if OðqiÞpd then centre
qi is kept in C and discarded otherwise. If we wish to
segment an image to its maximum detail then the
threshold is set to d ¼ 1. This would return the same
number of segments as the watershed algorithm. By
adjusting d oversegmentation can be prevented. The
Fig. 6. (a) Defines concept of overlap, (b
‘‘noisy’’ centres occur due to small deformations in
the shape and this will correspond to relatively large
merging heights yielding large overlap values. Hence
setting a threshold d not only specifies the con-
nectivity of objects but also eliminates the ‘‘noisy’’
centres. The effect of setting a maximum allowable
overlap can be seen in Fig. 7. At d ¼ 0:5 we have a
‘‘correct’’ (intuitive) segmentation into three objects
and at the limiting case of d ¼ 1 we obtain the 56
segments that are produced by the watershed
algorithm. In our experiment it would seem a
human can most easily separate two overlapping
objects provided that their overlap is no greater
than 0.5. Hence a chosen value of d ¼ 0:5 will best
describe this behaviour.

5.4. Extracting the objects

After filtering the centres the corresponding
individual objects can be extracted. CSS belongs in
the class of marker-controlled segmentation algo-
rithms. Hence the watershed algorithm is applied to
the negative of the distance image DðpÞneg ¼ �DðpÞ

modified so that only regional minima occur at each
centre. This technique is known as image imposition

(Soille, 2003). In this way the centres are used as
markers and the watershed algorithm will segment
according to the position of the centres. The
watershed ridge lines will form boundaries for each
object. To extract the objects, the watershed
boundaries are overlaid in white on top of the
black and white image. Thus the new binary image
) illustrates value of overlap OðqÞ.
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Fig. 8. Centres found by CSS.

Fig. 7. Effect of allowable overlap d on image segmentation. Best

segmentation (three centres) is obtained for d between 0.3 and

0.5.

Fig. 9. Objects extracted using image imposition with centres

acting as markers.
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will consist of black connected components corre-
sponding to objects, which can be easily extracted
for further analysis.3

6. Experimental results

6.1. An illustration

Fig. 8 displays the centres of dark objects within
the image in Fig. 1. The original image of size
1704� 2272 pixels was sampled every 3 pixels. By
sampling the image we decrease the processing time
for CSS, the sampling number is not sensitive to the
output of CSS and is sufficient provided the
sampled image can still be segmented into individual
objects by human eye. Once the coordinates of
centres have been found for the sampled image they
were mapped back to the original image so that
extraction of objects can proceed. The chosen
parameter values were s ¼ 4 and d ¼ 0:5. The
objects were then extracted, the first 30 largest
objects are shown in Fig. 9.

6.2. A comparison with the watershed method

To evaluate the quality of the obtained set of
centres C against a known set of centres C� we use a
recently proposed measure SðC;C�Þ (Charles et al.,
2006). The three components of the measure
evaluate the under/over segmentation of the objects,
the proportion of centres placed in the background
rather than in objects, and the distance between the
3Matlab function bwlabel can be used to label all connected

components.
guessed and the true centres. The measure varies
between 0 and 1 where 0 signifies perfect match
while 1 means that set C is useless. Table 2 shows
the results on several microscope images of palyno-
morphs. After the background was removed ‘‘ideal
centres’’ C� were found by first segmenting the
black and white image by hand and then calculating
the centre of each connected component according
with Definition 1. For example, a long and roughly
rectangular object would receive a centre some-
where on its ridge, not necessarily in the middle. The
values of S and the processing times indicate that
CSS is slower but consistently more accurate than
the watershed segmentation method.

6.3. A comparison with the extended h-maxima

transform

A similar comparison was made between the
extended h-maxima transform and CSS. The best
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Table 2

Segmentation results for the watershed method, Centre Supported Segmentation (CSS) and extended h-maxima on six microscope images

of palynofacies

Image no. Number of

objects

Watershed Extended h-maxima CSS

SðC;C�Þ Time (s) SðC;C�Þ Time (s) SðC;C�Þ Time (s)

1 73 0.43 7.37 0.33 19.10 0.14 48.87

2 72 0.58 7.32 0.45 46.65 0.22 107.07

3 82 0.60 7.59 0.48 44.10 0.29 94.21

4 14 0.55 7.31 0.39 33.58 0.13 73.05

5 77 0.53 7.39 0.41 38.89 0.22 87.61

6 25 0.50 7.30 0.38 16.89 0.11 31.90

Note: Small values of SðC;C�Þ indicate better match between the obtained (C) the ideal (C�) centres.
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value for h was determined by eye on one of the
images. This value was then fixed when segmenting
the other images. The segmentation results and times
shown in Table 2 indicate that CSS outperforms the
extended h-maxima transform. The following argu-
ments shed a light on the reasons for this result:
�
 The value h depends upon the scale of the input
image. The six images used in the experiment
were at similar resolutions but not completely
identical. Slight changes in resolution might have
affected the results. The CSS overlap parameter
d is scale independent so it consistently segments
objects regardless of the variability in the image
resolution.

�
 The images contained both small objects and

large objects. Choosing a value of h that would
segment both the large and small objects
correctly is difficult, if possible at all. In some
cases a large value of h is required to successfully
segment large overlapping objects. This results in
some smaller objects not being given markers by
the transform.

�
 The shapes of the objects in our images were

different, some were long or rectangular and
others were circular. The extended h-maxima
transform does not support the segmentation of
both long and circular objects. The output of the
algorithm in these cases is sensitive to h,
especially towards the lower end of the scale.
Consider as an illustration the image in Fig. 3
(a long wavy object and two overlapping circles).
The extended h-maxima transform was applied
to the distance function for 20 values of h

spanning uniformly the whole range of possible
values. Similarly the CSS algorithm was applied
with the values of d spanning its range ½0; 1�. The
graphs in Fig. 10 depict the number of segmen-
ted objects in each case. The long wave should be
segmented as one object and the overlapping
circles should be separated into two objects. The
highlighted region shows the range in which this
segmentation occurs. The extend h-maxima
transform will only produce the correct results
for a very small range of h. The CSS algorithm
will yield the correct result for a much larger
range of values in d. It appears the extended h-
maxima transform is more likely to either
correctly segment long objects but under-seg-
ment circular ones or oversegment long objects
while correctly segmenting circular ones.

�
 The value of h requires human intervention in

order to successfully segment objects of a
particular size. On the other hand, the CSS
algorithm can be run for any image with the
most intuitive results by fixing d ¼ 0:5. This
again is shown in Fig. 10(b) as 0.5 is contained
within the highlighted region.

7. Conclusion

We propose an algorithm for automatic detection
of the centres of objects in an image and extraction
of the corresponding objects. The algorithm, called
Centre Supported Segmentation (CSS), remedies the
oversegmentation problem of the watershed method
traditionally used for such segmentation. The
experiments show that CSS is more accurate
although slower than the watershed method. A
comparison with a mark-based segmentation meth-
od using extended h-maxima transform revealed
that CSS is more accurate and robust with respect
to its parameter called overlap. The algorithm relies
on another parameter, s, which is the threshold for
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Fig. 10. (a) Segmentation results of extended h-maxima. (b) Segmentation results of CSS. Solid lines show segmentation of long object,

dashed lines show segmentation of overlapping circles. Regions of correct segmentation are highlighted.
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cleaning the ‘‘dust specs’’ from an image. This
parameter can be picked in advance and applied
across the whole domain knowing that pieces of
kerogen with a radius smaller than tmm are of no
interest (not considered objects). Then s can be
calculated automatically for each image knowing
the resolution at which the image has been captured
and the microscope resolution.

The method for finding centres is a step towards
building an automatic system for identifying paly-
nomorphs and humic kerogen in images of rock
samples captured through a microscope. Once the
objects are extracted, classification methods can be
applied to determine their types. In this study we
demonstrated how CSS operates for extracting dark
objects, which could be further classed into inerti-
nite and vitrinite. After the dark objects are
removed, the remaining image will contain palyno-
morphs and amorphous objects. These objects can
be extracted in turn using again CSS. As CSS is not
meant to work on-line, the processing time is not
crucial. Nevertheless future effort will be also
directed towards speeding up CSS.

Application of CSS may be sought in various
domains, e.g., segmenting cell nuclei and setting the
initial position of active contours (Clocksin, 2003),
separating pollen grains for automated analysis
(France et al., 2000) and marker-controlled segmen-
tation (Gonzalez et al., 2004).
Appendix A. Supplementary data

Supplementary data associated with this article
can be found in the online version at doi:10.1016/
j.cageo.2007.09.014.
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