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Abstract. Classification of organic materials obtained from rock and
drill cuttings involves finding multiple objects in the image. This task
is usually approached by segmentation. The quality of segmentation is
evaluated by matching the whole detected objects to a reference seg-
mentation. We are interested in representing each object by a single
reference point called the “centre”. This paper proposes an evaluation
measure of image segmentation for such representation. We argue that
measures based only on distance between obtained centres and a set of
predefined centres are insufficient. The proposed measure is based on a
list of desirable properties of the segmentation. The three components
of the measure evaluate the under/over segmentation of the objects, the
proportion of centres placed in the background rather than in objects,
and the distance between the guessed and the true centres. The ability
of the measure to distinguish between segmentation results of different
quality is illustrated on three sets of examples including an image con-
taining microfossils and pieces of inert material.
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1 Introduction

Image segmentation is a fundamental process within automatic image analysis.
The large variety of practical applications has resulted in a spectrum of generic
and specific segmentation algorithms being currently available. The choice of a
segmentation algorithm suitable for the problem at hand is not simple. To aid
this choice, here we propose a measure of quality of object segmentation using
“centres” of the objects.
A survey was conducted by Zhang [1] where evaluation methods for image

segmentation were categorised as analytical and empirical. Analytical methods
examine the principles and properties of the segmentation algorithms themselves.
Empirical methods evaluate the output of the segmentation algorithms on test
images. Of the two groups, Zhang recommends the empirical methods.
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The quality of segmentation of an image is judged by the so called “goodness”
measure [1]. Examples of goodness measures are the entropy of the partitioned
image, intraregion uniformity, region shape, colour uniformity etc. Goodness
measures are usually defined by human perception of the ideal segmentation.
They are evaluated on the segmented image alone without requiring a reference
segmentation, i.e. without a ground truth. Empirical methods that use goodness
measures are known as goodness methods. Alternatively, the performances of
segmentation algorithms can be evaluated relative to a ground truth; these types
of methods are called discrepancy methods. They measure the inconsistency or
some form of distance between the ground truth (ideal segmentation) and the
actual segmented image.
There are four types of low level discrepancy approaches presented by Beau-

chemin and Thompson [2]:- pixel, area, point-pair and boundary. The pixel-
based discrepancy approach is the most common one and consists of counting
the number of misclassified pixels in the segmentation output relative to a refer-
ence partition. Using a similar approach Cardoso and Corte-Real [3] formulate
a general measure, an important asset of which is that it is a metric. Area-based
methods evaluate area of overlap between corresponding segments [4–6] while
boundary-based schemes compare the perimeters of the segments. The point-pair
discrepancy approach measures the agreement between two segmented images
[7] without explicitly solving the correspondence problem between the regions.
Segmentation produces a partition of the pixels and hence can be thought of as
a clustering technique. Thus the discrepancy between the obtained segmentation
and a ground truth segmentation can be evaluated by any measure of agreement
or similarity between two partitions. Along with the Rand index, various other
measures of similarity have been proposed in the literature, the most widely used
being Jaccard index, adjusted Rand index, correlation, mutual information and
entropy [7–9].
In this paper we propose an evaluation measure that belongs to the point-pair

group within the discrepancy approach. The segmented image is represented as
a set of coordinates of object centres. A reference image is used whereby the
centres are marked by hand. The proposed measure consists of three indices
evaluating different aspects of the positioning of centres. The rest of the paper
is organised as follows. Section 2 describes the real-life problem which prompted
this study. The new measure is proposed in Section 3. Toy examples and real
images are used to demonstrate the insufficiency of simple distance metrics for
evaluating the match between manually placed centres and centres obtained from
automatic segmentation. Experiments with microscopy images of palynomorphs
are reported in Section 4. Section 5 concludes the study.

2 Segmentation of microscopy images of palynofacies

Microfossil analysis is an essential task in micropaleontology, aiding the inter-
pretation of the history of regional and global climate and of the evolution of the
biosphere [10]. Figure 1 shows a typical image of a slide containing microfossils



and other organic debris. There are hundreds of types of microfossil and each
image may contain many of them. The end task is to locate and subsequently
classify the microfossils in the image.

Fig. 1. Thin section of rock containing microfossils

Figure 1 demonstrates the difficulties in locating the objects. First, pieces of
inert material (darker objects of irregular shapes and sizes) have to be eliminated
so that the image contains only the microfossils. Second, the microfossils appear
in different orientation, partly or completely overlapping, clustered together,
overshadowed by inert material, distorted by pressure forces in the rock, etc.
Third, the colour of some of the microfossils is barely distinguishable from the
image background. Fourth, the background is not uniform across the image.
Pixel intensities which correspond to background at some places may well be
classed as object at a different place in the image.

Although the different types of fossils have different texture and structure,
they can be roughly perceived as round or elliptical objects. Hence we are in-
terested in finding “centres” so that we can crop sub-images of microfossils at a
later stage applying a higher resolution.

Before object segmentation is attempted, the background must be removed.
The difficulty in our case comes from the specific illumination of microscope
slides. Usually the centre of the slide is brighter and the intensity fades towards
the edges. Also, since the microscopic view is a circle, dark corners might appear.
The approach adopted here was to look for and eliminate dark corners, model the
background as a function of x and y and remove it from the image. A parabola



was fitted to model the intensity of the background for each x and then for
each y. The pixels whose true intensity was substantially lower than the scores
on both parabolas were marked as non-background (intensity margin of 20 was
empirically chosen here).
The measure proposed in the next section is intended for any segmentation

method which produces a set of object centres. The standard watershed seg-
mentation was tried as well as a recently developed algorithm called floodfill
segmentation [11]. Here we look for a measure to compare object segmentation
methods on the basis of their output.

3 Evaluation measure for segmentation methods

Here we construct an empirical discrepancy measure to determine how close two
segmented images are.

3.1 Definition of “centre” of an object

Suppose that a distance transform is applied to a black and white image so that
each pixel, p, is associated with a function D(p) [12]. The value of D(p) gives
the Euclidean distance from p to the nearest white pixel.

Definition 1. A centre of an object is the pixel p with the largest distance
D(p) within the object. If there is a tie, any of the tied pixels can be chosen to
be the centre.

Note that this definition does not imply that the centres will be positioned at
the centres of gravity of the objects. Also, one object may have infinite amount
of candidate centres with the same highest D(p). This will happen, for example,
in a ring-shaped object. The geometric position of points at equal highest D(p)
will be a circle with radius equal to the average of the inner and outer radii of
the ring. Any point on the circle will be a valid centre according to Definition 1.
The obtained centres are required for extracting the microfossils with a higher

resolution for the purposes of subsequent classification. However, more generally,
centres of objects may be required for other purposes such as setting the initial
position of an active contour [13] or object tracking within moving images [14].
The centres provide a handle for our evaluation method.

3.2 Comparison of sets of centres based on distances

Let C∗ = {c∗1, . . . , c
∗

n} be the true centres and C = {c1, . . . , cm} be the centres
obtained through automatic segmentation. The most intuitive matching measure
would be the sum of distances to the nearest centre. Let

R(C∗ → C) =

n
∑

i=1

m

min
j=1
{dist(c∗i , cj)} (1)



be the representation of C∗ by C. In the ideal case where the two sets of centres
are identical, C∗ = C, we have

R(C∗ → C) = R(C → C∗) = 0.

If C ⊂ C∗, we have under-segmentation. In this case R(C∗ → C) > 0 and
R(C → C∗) = 0. If C∗ ⊂ C, the image is oversegmented, R(C∗ → C) = 0 and
R(C → C∗) > 0. To account for both under- and over-segmentation, and also
for the discrepancies in the centre location, we can use the following measure

Md(C
∗, C) = R(C∗ → C) +R(C → C∗) (2)

=

n
∑

i=1

m

min
j=1
{dist(c∗i , cj)}+

m
∑

j=1

n

min
i=1
{dist(cj , c

∗

i )} (3)

Here “dist” can be any distance. In the illustration below we use Euclidean
and City-block distances. The smaller the value of Md, the more similar the
two segmentations are. We note that Md is a metric on the space of sets of
centres because Md(C

∗, C) ≥ 0 with Md(C
∗, C) = 0 iff C∗ = C (nonnegativity);

Md(C
∗, C) = Md(C,C∗) (symmetry) and it can be proved that Md(C1, C3) ≤

Md(C1, C2) +Md(C2, C3) (triangle inequality), where C1, C2 and C3 are sets of
centres.
The problem with the distance-based measures is that they do not take into

account the specific objectives of segmentation. An example is shown in Figure
2. The true centre of the grey object, according to Definition 1, is situated in the
point with the largest D(p) (marked with ‘x’). Two guessed centres are displayed
in the figure. Clearly Guess 1 is closer to the true centre and any distance measure
will favour it over Guess 2. However, Guess 2 sits on the next highest peak of
D(p) in the object and is a much better representation of the object than Guess
1. This deficiency of the distance-based measures is addressed by the measure
proposed below.

Guess 1

Guess 2

True centre

Fig. 2. Examples of a true and two guessed centres.

3.3 Comparison of sets of centres based on segmentation heuristics

The three most desirable properties of a segmented image can be specified as
follows



– A perfectly segmented image exhibits no under- or over-segmentation.
– There are no centres of objects which lie outside objects boundaries.
– The centre of each segment should coincide with the relevant object centre.

We shall assume that a reference segmentation is available to represent the
ground truth. We also assume that the segmentation process returns a set of m
centres, C. We propose to evaluate the quality of segmentation by the following
three measures.

Definition 2. Let ni be the number of centres placed by the automatic segmen-
tation within object i (the object is defined by the ground truth segmentation).
The measure of under- or over-segmentation of i is

ri =

{

1− 1/ni, if ni > 0
1, if ni = 0

(4)

If there is no centre in the object or if there are large number of centres there,
ri approaches 1. The most desirable value of ri is 0 which is achieved if there is
only one centre in the object.

Definition 3. The measure of background segmentation is

v = 1−
1

m

n
∑

i=1

ni. (5)

Note that v is the proportion of automatic centres that are not contained within
the boundaries of any objects. Thus v = 0 corresponds to the ideal situation
where the background is free of centres placed by mistake by the segmentation
algorithm.

The values r and v completely represent the under and over-segmentation of
the image regardless of the location of the centres within the objects. Hence the
third measure evaluates how close the approximations are to the ideal centres
within the objects.

Definition 4. Let c∗i be the true centre of object i and let c′ ∈ C be the
nearest centre from the automatic segmentation which lies within object i, i.e.,

c′ = arg min
c ∈ object i

{dist(c∗i , c)} (6)

The centre discrepancy is defined as

qi = 1−D(c′)/D(c∗i ), (7)

where D(c) is the distance transform value for point c. By Definition 1, D(c∗i ) is
the maximum distance within object i therefore D(c′) ≤ D(c∗i ), and qi ∈ [0, 1].
Approximated centres near the boundaries of objects should be assigned high



discrepancy value, qi, while those in the middle of objects should be assigned a
low discrepancy value.
To illustrate the rationale for introducing the centre discrepancy, qi, consider

an elongated object as shown in Figure 3. There are infinitely many possible cen-
tres, according to Definition 1, situated along the ridge of the distance function
for this object. Thus any centre on the ridge should have a lower error value qi

than centres on the edge of the object. Figure 3 shows that Euclidean distance
will be misleading in this case as a centre at the periphery will be preferred to
one of the true centres with the largest D(p).

(a) Small qi, large Euclidean distance (b) Large qi, small Euclidean distance
(preferred)

Fig. 3. Illustration of the advantage of the centre discrepancy measure qi over Eu-
clidean distance in evaluating an approximated centre (circle) with respect to the true
centre (cross).

The three measures ri, v and qi can be combined so that the quality of the
segmentation is measured by a single value.

Definition 5. The measure of quality of segmentation represented by the set
of centres C with respect to a ground truth segmentation with a set of centres
C∗ is

S(C,C∗) =
1

3

(

v +
1

n

n
∑

i=1

(ri + qi)

)

, (8)

where ri, v and qi are calculated as in Definitions 2-4, respectively.

4 Experimental results

4.1 A single-object illustration

We start with a simple example showing why distance-based measuresMd(C,C∗)
are insufficient for the purposes of segmentation. Figure 4 displays seven copies
of an image containing a single elliptical object with different nonempty sets
of centres C. In all 7 cases the set C∗ consists of one element which is the
geometrical centre of the ellipse.
Three measures of quality of the segmentation represented by the centres C

(dots) are shown in the table:- Md(C,C∗) for Euclidean and City-block distance
and the quality of segmentation S(C,C∗) as in Definition 5. The rows in the table
are sorted with respect to S(C,C∗) starting with the best case (minimum, S = 0)
and ending with the worst case (maximum, S = 1). There are discrepancies in



No Image Md Md r v q S

(one object) Euclidean City-block

1 0.00 0.00 0.00 0.00 0.00 0.00

2 1.43 1.90 0.00 0.50 0.00 0.17

3 3.70 3.70 0.50 0.00 0.00 0.17

4 7.40 7.40 0.00 0.00 0.70 0.23

5 2.41 3.00 0.50 0.33 0.00 0.28

6 2.95 3.80 0.00 0.50 0.80 0.47

7 4.88 6.80 1.00 1.00 1.00 1.00

Fig. 4. Seven examples of segmentation of one object using centres and the values of
the measures of quality of the segmentation. The true centre is marked with ‘×’ and
the guessed centres are marked with ‘•’

the ranking of the 7 cases according to the three measures. While the trivial
case where the single guessed centre coincides with the true centre is the most
preferred case for all the measures, S(C,C∗) disagrees with both distance-based
measures Md about the least preferred case. Based on distances, case 4 is the
worst because the guessed centre is far from the true centre. However, it is
important for our segmentation purposes that the centres lie within the objects.
Thus case 7 should be the least preferable one because the object has not been
found as the single centre lies in the background. Also, the oversegmented case
5 will be preferred to case 3 by both distance measures. In both cases there
is a perfect centre within the set C. Note that there is an extra centre in the
background in case 5, while there is no such centre in case 3. The disagreement
between the two distance-based measures is minimal. They rank differently only
cases 3 and 6. The major flaw of the distance measures is that they do not
take into account any object boundaries. Hence the advantage of Md over S
would be speed of calculations. However, the better match with the desiderata
for segmentation quality leads us to choose S.

4.2 A multiple-object illustration

An example involving multiple objects is considered next. Figure 5 (a) presents
the objects and the ideal segmentation. Three special cases are shown in plots
(b), (c) and (d). The centres are placed manually in all three images.



(a) Segmented original (C∗) (b) Over-segmented background (C)

(c) Under-segmented objects (C) (d) Completely misplaced centres (C)

Fig. 5. The original segmentation of a multiple object image and three special cases of
segmentation (centres have been placed manually in (b), (c) and (d))

For the task of classifying fossils cropped around the centres, missing an ob-
ject should be penalised stronger than placing an extra centre in the background.
In the former case, an important piece of information may be overlooked. In the
latter case the analysis time will increase due to the extra centres of nonexistent
objects but all the microfossils will be detected in the image. For this reason,
the undersegmented image (c) should be ranked worse than (b) and (d) should
be ranked worse than (c). Table 1 displays the three measures Md-Euclidean,
Md-City block and S for the images in plots (b), (c), and (d).

Table 1. Measures of segmentation quality for the images in Figure 5 (b), (c) and (d)
with respect to the ground truth (a).

Subplot Md Md r v q S

Euclidean City-block

(b) Over-segmented background 1180 1513 0.00 0.18 0.38 0.18
(c) Under-segmented objects 585 735 0.50 0.61 0.00 0.37
(d) Completely misplaced centres 1068 1327 1.00 1.00 1.00 1.00



The table shows that the distance-based measures fail to produce the required
ranking while S clearly distinguishes between the three cases.

4.3 Results on microfossil images

The results from applying the watershed [15] and floodfill [11] segmentation
methods on the image shown in Figure 1 are displayed in Figures 6 and 7,
respectively. Table 2 compares the two segmentation approaches. The distance-
based measures Md-Euclidean and Md-City block agree with S that the floodfill
method performs better than the watershed algorithm. There is a considerable
difference in the score of the distance-based measures between the two types of
segmentations indicating that these two approaches are very different, whereas
S shows that floodfill method only slightly improves over the watershed method.
This corresponds precisely to how we would interpret the data by visual inspec-
tion. The watershed algorithm (Figure 6) has failed to capture 3% of the objects,
with most of the captured objects being oversegmented. The floodfill algorithm
(Figure 7) has failed to capture 13% of the objects but the detection was com-
pleted with nearly no oversegmentation. The watershed method makes up for its
oversegmentation by achieving a high capture rate. The small difference between
the two values of measure S in Table 2 account for the fact that both methods
have assets and flaws and a choice between the two cannot be made with high
certainty.

Fig. 6. Manually segmented inert material from Figure 1 overlaid with centres found
through the watershed segmentation method.



Fig. 7. Manually segmented inert material from Figure 1 overlaid with centres found
through the floodfill segmentation method.

Table 2. Segmentation quality of watershed and floodfill segmentation of Figure 1.

Method Md Md r v q S

Euclidean City-block

Watershed 35407 44784 0.56 0.45 0.45 0.49
Floodfill 13254 16783 0.28 0.53 0.39 0.40

5 Conclusions

This paper proposes a new measure of the quality of segmentation of images
containing objects. The measure operates on a set of ideal centres of the objects,
C∗, assumed to be the ground truth and a set of guessed centres, C, obtained
through a segmentation algorithm. Thus the proposed measure falls into the
discrepancy category of evaluation methods, as detailed by Zhang [1].
Based on a list of desired properties and examples with generated and real

images, we argue that the proposed measure of quality, S(C,C∗) is better than
measures based on the distances (Md) between the centres in sets C and C∗.
The three components of the proposed measure comply with the intuition for
evaluating segmentation results represented by centres. Another advantage of
S over Md is that S has practically useful lower and upper limits while the
distance-based measures have only a lower limit. A disadvantage of S is that
it is slower to calculate than Md because it requires knowledge of the objects
in the image. We are more concerned with locating the inert material through
segmentation rather than extracting the material, so even though two different
segmentations can result in the same set of centres the value S will still provide
an accurate comparison between segmentations.



The intended application of S is for choosing a segmentation method and
tuning it for the specific practical application. In our case, a small number of
images will be labelled manually by an expert palynologist, and used as the
ground truth. After tuning, the segmentation method will be applied as a stan-
dard routine to find the microfossils in other images coming from the same
domain.
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