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Abstract We present a fully automatic arm and hand
tracker that detects joint positions over continuous sign lan-
guage video sequences of more than an hour in length. To
achieve this, we make contributions in four areas: (i) we show
that the overlaid signer can be separated from the background
TV broadcast using co-segmentation over all frames with
a layered model; (ii) we show that joint positions (shoul-
ders, elbows, wrists) can be predicted per-frame using a
random forest regressor given only this segmentation and
a colour model; (iii) we show that the random forest can
be trained from an existing semi-automatic, but computa-
tionally expensive, tracker; and, (iv) introduce an evaluator
to assess whether the predicted joint positions are correct
for each frame. The method is applied to 20 signing footage
videos with changing background, challenging imaging con-
ditions, and for different signers. Our framework outper-
forms the state-of-the-art long term tracker by Buehler et al.
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(International Journal of Computer Vision 95:180–197,
2011), does not require the manual annotation of that work,
and, after automatic initialisation, performs tracking in real-
time. We also achieve superior joint localisation results to
those obtained using the pose estimation method of Yang and
Ramanan (Proceedings of the IEEE conference on computer
vision and pattern recognition, 2011).
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1 Introduction

A number of recent papers have demonstrated that signs
can be recognised automatically from signed TV broadcasts
(where an overlaid signer describes the broadcast) using only
weak and noisy supervision (Buehler et al. 2009; Cooper
and Bowden 2009; Farhadi and Forsyth 2006). For example,
by using the correlations between subtitles and signs both
Buehler et al. (2009) and Cooper and Bowden (2009) were
able to automatically extract sign-video pairs from TV broad-
casts; these automatically extracted sign-video pairs could
then be used as supervisory material to train a sign language
classifier Buehler et al. (2010) to recognise signs in new mate-
rial. However, current research in this area has been held back
by the difficulty of obtaining a sufficient amount of training
video with the arms and hands of the signer annotated. This
is a great pity because there is a practically limitless supply
of such signed TV broadcasts.

The standard approach of Buehler et al. (2011) for track-
ing arms and hands in sign language TV broadcasts requires
manual labelling of 64 frames per video, which is around
three hours of manual user input per one hour of TV footage.
In addition, the tracker (by detection) is based on expensive
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Fig. 1 Arm and hand joint positions are predicted by first segmenting the signer using a layered foreground/background model, and then feeding
the segmentation together with a colour model into a random forest regressor

(a) (b)

(c) (d)

Fig. 2 Challenges for joint tracking. a Similar foreground and back-
ground colours render the colour cue less informative; b motion blur
removes much of the edges of the arm; c a face in the background
renders the face detector-based colour model initialisation difficult; d
proximity of the two hands makes the assignment to left and right hand
ambiguous

computational models and requires hundreds of seconds
computation time per frame. Furthermore, signed TV broad-
casts are very challenging material to segment and determine
human joint positions on for a number of reasons that include:
self-occlusion of the signer, self-shadowing, motion blur due
to the speed of the signing, and, in particular, the changing
background (since the signer is superimposed over a mov-
ing video that frequently even contains other people, e.g. see
Figs. 1 and 2). These three factors have hindered the large
scale application of this method.

In this paper we describe a method for tracking joint posi-
tions (of arms and hands) without any manual annotation

and, once initialised, the system runs in real-time. The three
key ideas are (i) for signed video the signer can be segmented
automatically using co-segmentation (Sect. 2), (ii) given the
segmentation, the joint positions can be predicted using a ran-
dom forest, and (iii) the random forest can be trained using
Buehler et al.’s tracking output, with no manual annotation
(Sect. 3). We show that the random forest trained in this man-
ner generalises to new signers (Sect. 5). Figure 1 illustrates
the processing steps.

Each of the ideas has more general applicability: (i) the
co-segmentation method can be easily generalised to other
similarly laid out TV broadcasts, e.g. the majority of EU
countries broadcast their signed TV broadcasts in a format
suitable for this method; (ii) joint positions can be predicted
by a random forest regressor in general, once the person is
segmented from the background [as in the Kinect line of
research Shotton et al. (2008)]; and (iii) the random forest
tracker can be trained from existing tracked data with quite
some generalisation over clothing and body mass (Charles et
al. 2013).

This paper is an extended version of our BMVC 2012
paper Pfister et al. (2012). In addition to a more detailed
exposition, we include here an extensive set of new experi-
ments with a much larger dataset (20 TV broadcast videos
instead of 5), a pose evaluator (Sect. 4) that provides an indi-
cation of whether the joint predictions are correct or not, and
a comparison with the joint prediction method of (Yang and
Ramanan 2011).

1.1 Related work

1.1.1 Random forests

The innate versatility of random forests (RFs) (Amit and
Geman 1997; Breiman 2001) makes them suitable for a vari-
ety of machine learning tasks (Criminisi et al. 2012), such as
classification, regression and clustering. They are naturally
multi-class and contain a structure which lends itself to par-
allelisation and multi-core implementations (Sharp 2008).
Along with these properties, the ever increasing computing
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power and training data over recent years has spurred the
interest in RFs and fern-based Ozuysal et al. (2010) meth-
ods in computer vision literature. They have been applied to a
variety of problems, including image classification (Bosch et
al. 2007; Marée et al. 2005), object detection (Gall and Lem-
pitsky 2009; Criminisi et al. 2011; Kontschieder et al. 2012),
image/video segmentation tasks (Shotton et al. 2008; Yin et
al. 2007; Geremia et al. 2011; Nowozin et al. 2011) and fea-
ture extraction (Liu et al. 2012). RFs are also fast to resolve
at inference time, therefore lending themselves to real-time
applications of tracking (Lepetit and Torr 2006; Santner et
al. 2010; Apostoloff and Zisserman 2007).

In particular, we are interested in the work on human
pose estimation where RFs have been used for head pose
estimation (Fanelli et al. 2011) and detecting facial feature
points (Fanelli et al. 2012; Dantone et al. 2012; Cootes et al.
2012). Of special regard are the methods for inferring full
body pose, where notable success has been achieved using
depth imagery. By applying a classification forest, Shotton
et al. (2011) were able to segment a 3D depth map of a person
into body parts and use the segmentation as a stepping stone
for computing body joint locations. A performance boost
was found by Girshick et al. (2011) using regression forests
and Hough voting. Further improvements in accuracy on the
same dataset were obtained by Taylor et al. (2012) using
an RF to form dense correspondences between depth image
pixels and a 3D body model surface, enabling the use of a
one-shot optimisation procedure to infer pose. Recently Sun
et al. (2012) have conditioned the RF on a global variable,
such as torso orientation, to enhance performance.

The success of these full body pose estimation methods
depends upon the use of depth imagery. Depth images are
colour and texture-invariant and make background subtrac-
tion much easier. This substantially reduces the variability
in human appearance. The remaining variability due to body
shape, pose and camera angle is accounted for by training
with large quantities of data. In the same spirit, we propose
an upper body pose estimation method that exploits the large
quantities of training data available and the efficiency and
accuracy of RFs. However, our method does not depend upon
depth imagery for success, but instead uses raw RGB images
with only a partially known background.

1.1.2 Pose Estimation

There is a vast array of literature regarding human pose esti-
mation due to a huge array of different applications reliant on
analysing people in images and video (Moeslund 2011). It is
common to use pictorial structures (Felzenszwalb and Hut-
tenlocher 2005; Ramanan 2006; Ramanan et al. 2007; Sivic
et al. 2006) to model human pose due to low computational
complexity during inference. In more recent work, the focus
has been on improving the appearance models used in pictor-

ial structures for modelling the individual body parts (Eichner
and Ferrari 2009; Eichner et al. 2012; Andriluka et al. 2012;
Johnson and Everingham 2009; Sapp et al. 2010). Building
upon the pictorial structure framework, Felzenszwalb et al.
(2008, 2010) proposed deformable part based models. It has
been shown by Yang and Ramanan (2011) that a mixture of
deformable parts can be used in a tree structured model to
efficiently model human pose. This results in a very general
and powerful pose estimation framework which we compare
to our method in Sect. 5.3.4. Sapp et al. (2011) model body
joints rather than limbs, and also track joints across frames,
using a set of tree-structured sub-models. We have not yet
explored in our work the benefit of tracking the predicted
joints over time.

Previous work on pose estimation for sign language recog-
nition (Cooper and Bowden 2007; Starner et al. 1998a;
Farhadi et al. 2007; Buehler et al. 2011; Pfister et al. 2012) in
videos has relied on accurate hand tracking where it is popular
to use skin colour for hand detection, although other detectors
based on sliding window classifiers using Haar-like image
features (Kadir et al. 2004; Ong and Bowden 2004; Dreuw
et al. 2012) have been used. Of particular relevance here is
the method of Buehler et al. (2011) which used a genera-
tive model for both the foreground (signer) and background
(the image area surrounding the signer). The foreground was
generated by rendering colour models of the limbs and torso
in back-to-front depth order (the “painter’s algorithm”) so
that occlusions were handled correctly. The computational
expenses of evaluating all such renderings was reduced by
sampling from a pictorial structure proposal distribution.

1.1.3 Co-segmentation

Co-segmentation methods (Rother et al. 2006; Hochbaum
and Singh 2009; Joulin et al. 2010; Chai et al. 2011) con-
sider sets of images where the appearance of foreground
and/or background share some similarities, and exploit these
similarities to obtain accurate foreground-background seg-
mentations. Rother et al. (2006) originally introduced the
problem of co-segmenting image pairs. Their approach was
to minimise an energy function with an additional histogram
matching term that forces foreground histograms of images
to be similar. Hochbaum and Singh (2009) modified the his-
togram matching term to enable the use of max flow-based
algorithms. More recently, Chai et al. (2011, 2012) proposed
co-segmentation algorithms that work on each image cate-
gory separately, and embed class-discriminative information
into the co-segmentation process.

In our case our co-segmentation algorithm automatically
separates signers from any signed TV broadcast by building
a layered model (Jojic and Frey 2001; Szeliski et al. 2000;
Kumar et al. 2008). We use this layered model of the signer to
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FG DBG SBG

Fig. 3 Generative layered model of each frame. The co-segmentation
algorithm separates the signer from any signed TV broadcast by building
a layered model consisting of a foreground (FG), dynamic background
(DBG) and static background (SBG)

provide a suitable input representation for the random forest
regressor that is superior to using the raw input image itself.

1.1.4 Sign Language Recognition

Previous studies in sign language recognition rely on data
generated by performers signing words under controlled
conditions. Learning to recognise signs usually depends
upon obtaining ground truth data and the ability to track
the signers’ head and hand positions (Vogler and Metaxas
1998; Dreuw et al. 2006; Starner et al. 1998b). Heavy con-
straints are typically imposed, such as wearing motion sen-
sors (Chunli et al. 2002) or using a uniform background
and/or wearing coloured gloves. Generating a small amount
of such data with ground truth is both labour-intensive and
expensive. It is possible to learn signs with small quantities
of labelled data (Kadir et al. 2004; Bowden et al. 2004), but
to increase the vocabulary of recognisable signs from 100s
of words to 1,000s of words, more data is required. Methods
exist which remove the need to annotate signs, and instead
use weak and noisy supervision (Cooper and Bowden 2009;
Buehler et al. 2009) from signed TV broadcasts. However,
to release the full potential of these systems and harness the
power of a larger dataset, one requires a fast and inexpensive
method of tracking the signer. Here we show how to generate
tracked signer data cheaply and in real-time.

2 Co-segmentation Algorithm

The goal of the co-segmentation algorithm is to segment the
overlaid signer from each frame of the broadcast. We exploit
the fact that sign language broadcasts consist of an explicit
layered model as illustrated in Fig. 3. In the spirit of a genera-
tive model, i.e. one that generates the image by composition,
we exploit these inherent layers to provide an accurate seg-
mentation of the signer. We describe the three layers in the
following paragraphs.

The static background layer (SBG) essentially consists of
the framing (around the actual/original broadcast) that has
been added by the studio. As can be seen in Fig. 4, the sta-

tic background is partially revealed and partially occluded
in each frame depending on the position of the signer. In a
similar manner to how a “clean plate” is constructed in film
post-production, by looking through the whole video and
combining the partially revealed static backgrounds one can
automatically, and almost fully, reconstruct the actual static
background. This layer can then be exploited when segment-
ing the signer.

The dynamic background layer (DBG) consists of a fixed
rectangle, where the original video is displayed, but is always
partially covered by the signer and changes from one frame
to another. Its colour information, for the region where it does
not overlap a bounding box on the signer, is modelled sepa-
rately and forms a background distribution for a subsequent
segmentation of the signer.

Finally, the foreground layer (FG) consists of the moving
signer. By assuming that the colour distribution of the signer
remains constant we can build an accurate foreground colour
model for the whole video.

2.1 Algorithm Overview

The input to the co-segmentation algorithm is a signed TV
broadcast video, and the output is a foreground segmentation,
a quality score for the segmentation, the head position and a
colour model for the skin and torso. These will be used in the
random forest regressor. The algorithm consists of two main
steps:

2.1.1 Automatic Initialisation (Per Image Sequence)

To exploit the inherent layered model we initialise the algo-
rithm by first determining the “clean plate”, the dynamic
rectangle and the foreground colour model. The details of
how this “initialisation set” is obtained are given in Sect. 2.2.

2.1.2 Segmentation with a Layered Model and Area
Constraints (Per Frame)

The initialisation set is then used to derive an accurate hard
segmentation of the signer in each frame. The clean plate and
an area constraint are used to refine an initial rough segmen-
tation. The details of this method are given in Sect. 2.3.

2.2 Co-segmentation Initialisation

Our goal here is to obtain the layers and their layout that
are common to the video sequence (in order to enable the
subsequent per-frame segmentation). In detail, we wish to
obtain the regions shown in Fig. 4, as well as the foreground
colour distribution. Our approach is to treat each frame as
being generated from a number of layers, as depicted in Fig. 3,
and to thereby solve for the layers and layout. This problem
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Fig. 4 Co-segmentation. a Original frames; b dynamic layer (rectan-
gle spanned by the green dots) and the permanently fixed background (in
red)—the remaining green area behind the signer is the backdrop which
is not part of the fixed background; c rough segmentation with clamping
regions for running graph cut. A is the permanently fixed background;
B is the clamping region for the dynamic background; C is part of the

foreground colour model and D is a hard foreground clamp (based on the
position of the detected face). d Initial GrabCut segmentation that uses
colour distributions of A, B for background and C, D for foreground;
e detail of the red rectangular region of (d) showing the segmentation
refinement stage (see text); f segmentation after clean plate and area
size refinements (Color figure online)

differs from typical applications of generative layered models
for video, e.g. (Jojic and Frey 2001; Kumar et al. 2008), since
part of the background in the video is always moving so we
have a dynamic rather than fixed layer. The creation of the
layered model can be broken down into a step per layer:

2.2.1 Dynamic Background

The aim in this step is to find the rectangle that contains the
dynamic background, and furthermore divide it into a region
where the signer may overlap, and another where the signer
never reaches (see Fig. 4c). The latter region will be used to
define a per-frame background colour. To this end we find

pixels that change intensity values for the majority of frames
and compute their rectangular bounding box, as shown in
Fig. 4b. This also yields an area that is permanently static
throughout the video (region A in the same figure) that we
use as a permanent BG clamping region. Regions A and B in
the same figure, which the signer never reaches, are defined
relative to the position of the signer’s face (the face detection
method is described below).

2.2.2 Static Background

The aim here is to find the static background, which can
be viewed as consisting of a “clean plate” (term explained
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above). Once we have this “clean plate”, we can then say
with near-certainty whether a pixel belongs to the FG or BG.
The clean plate is obtained by roughly segmenting a random
set of frames into FG (signer) and BG using a graph cut algo-
rithm. The regions used to obtain the FG and BG distributions
are illustrated in Fig. 4c. In particular, areas selected relative
to the position of the signer’s face (face detection method
described below) are used to initialise the FG colour distrib-
ution. Given these segmentations, the clean plate is obtained
as a median over the BG.

2.2.3 Foreground Colour Model

Here the aim is to obtain the signer colour distribution
(which is assumed approximately constant throughout the
sequence). This removes the need for finding accurate FG
colour models for individual frames. The colour distribu-
tion (which is represented by a histogram) is obtained from
the rough FG segmentations (Fig. 4c, computation described
above) using frames where the colour histograms of the FG
and dynamic background differ the most. The high colour
difference increases the likelihood that there is a high con-
trast between the FG and BG and thus that the segmentation
is correct.

2.2.4 Face Detection

Face detection is used for initialisation and frame-by-frame
segmentation. Detection of both frontal and profile view faces
is done by choosing between the face detector by Zhu and
Ramanan (2012) (high recall for frontal faces) and a face
detector based on upper body detection (Ferrari et al. 2008)
(lower recall but detects profile views) according to their
confidence values.

2.3 Per-frame Segmentation with a Layered Model and
Area Constraints

Having finished the initialisation step we now have a layered
model that can be used to derive a segmentation of the signer.
This layered model (the “initialisation set”) is used to (i)
improve the segmentation by comparing each pixel against
the clean plate (to yield a near-certain segmentation label
as the background is known); and (ii) shrink the foreground
segmentation size if it is too big (to avoid catching e.g. skin
regions in the background).

The segmentation uses Rother et al. (2004), with the FG
colour model provided by the initialisation set and, as in
Ferrari et al. (2008), with the FG clamped in areas based
on the face location (Fig. 4c). The BG colour distribution is
known from the dynamic background. The segmentation is
refined twice: first by comparing pixels to the clean plate of
the static background, and then by shrinking the foreground

size if it is much bigger than the average size. The latter is
done by adding a constant to the graph cut unary potentials
of the dynamic background (this increases the likelihood that
a larger part of the dynamic background is labelled as BG,
hence reducing the size of the FG). This addresses a common
failure case where the dynamic background contains a colour
similar to the signer, which leads to the foreground region
‘catching’ part of the dynamic background and becoming too
large. In contrast, the foreground is seldom too small thanks
to good FG colour model estimates. Examples of fully refined
segmentations are shown in Fig. 4e.

The segmentation still fails in certain difficult cases, e.g.
when the colours of the FG and BG are very similar or when
the face detector fails. To this end we compute a segmentation
quality score as described in Sect. 4.

2.4 Colour Model and Posterior

At this stage we have a foreground segmentation that is rated
by a segmentation quality score. However, additional layout
information is also available from the the spatial position of
the the skin and torso (i.e. non-skin) pixels. The posterior
probability of the skin and torso pixels is obtained from a
colour model. Computing the colour posteriors for skin and
torso abstracts away from the original colour, of the clothes
for example, which varies between signers and is not directly
informative (Benfold and Reid 2008).

In a similar manner to the construction of the initialisation
set for the layers, the skin colour distribution is obtained from
a patch of the face over several frames, and the torso colour
distribution is obtained from a set of FG segmentations from
which the colours of the face/skin are automatically removed.
These colour distributions are then used to obtain a pixel-wise
posterior for the skin and torso in each frame.

2.5 Technical Details

Here we provide the additional details for the segmenta-
tion method. The dynamic background is determined using
a subset of 300 uniformly sampled frames for each video.
Earth mover’s distance (EMD) is used to compare colour
histograms for extracting the foreground colour model and
for generating colour posteriors (to remove skin regions from
the FG segmentations). Faces are detected in the right half of
the image for computational efficiency. The maximum fore-
ground segmentation size is set to a standard deviation above
the median segmentation size over all frames in a video.

The input to the random forest regressor (described in
the following section) for each frame consists of: the fore-
ground segmentation, the segmentation quality score, the
head position, and the skin and torso posterior (from the
colour model). The performance of the co-segmentation
algorithm is assessed in Sect. 5.
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Fig. 5 Estimating joint positions. a Input colour model image; b ran-
dom forest classifies each pixel using a sliding window and learnt test
functions; c probability density function of each joint location, shown

in different colours per joint (more intense colour implies higher prob-
ability); d joint estimates, shown as small circles linked by a skeleton

3 Random Forest Regression

We cast the task of localising upper body arm joints and head
position as a multi-class classification problem, classifying
each image pixel into one of 8 categories l ∈ {head centre,
left/right wrist, left/right elbow, left/right shoulder, other}
using a random forest classifier in a sliding-window fashion.
From here on we also refer to “head centre” as a joint (see
Fig. 5d). As shown in Fig. 5a, the input to the random forest
comes from the colour model image after co-segmentation.
The joints are localised on a per-frame basis to avoid tracking
errors, e.g. drifting.

The random forest classifier uses simple features to make
classification extremely computationally efficient. Classifi-
cation to a discrete class label l ∈ {li }, for each pixel q
across the image, is performed in a sliding-window fashion.
We classify the pixels by computing the conditional distrib-
ution p(l|Wq , I ) for each label, where I is the colour model
image and Wq is the set of pixels in the window surrounding
q. The window size is chosen so as to maximise joint estima-
tion accuracy in validation videos. The random forest is an
ensemble of T decision trees, as illustrated in Fig. 5b. Each
tree t consists of split nodes which perform a true or false
test on incoming pixels. Pixels are recursively pushed down
either the left or right branch depending upon the outcome
of the test. When a pixel reaches a leaf at the bottom of the
tree, a learnt probability distribution pt (l|Wq , I ) assigns the
pixel a probability for class label l. The final conditional dis-
tribution p(l|Wq , I ) is obtained by taking an average across
all trees in the forest as follows:

p(l|Wq , I ) = 1

T

T∑

t=1

pt (l|Wq , I ) (1)

We use very efficient test functions f (.) at the nodes of the
trees which only compare pairs of pixel values (Shotton et al.
2008). A pixel q is represented by xq = (x1

q , x2
q , x3

q ) where
x1

q , x2
q , x3

q are the skin, torso and background colour posterior

values at pixel q respectively (Benfold and Reid 2008). The
function f operates on a pair of pixels (a, b) from within the
window Wq and produces a scalar value which is compared
against a threshold value υ—see Fig. 5a. These tests can
take one of four forms: f (a) = xc

a , or f (a, b) = xc
a − xc

b ,
or f (a, b) = xc

a + xc
b , or f (a, b) = |xc

a − xc
b|, where c ∈

{1, 2, 3} indexes the type of colour posterior value to choose.

3.1 Training of the Forest

In each frame of the video, circular patches of radius 13 pixels
centred on joint locations are labelled as that joint, with all
other pixels labelled as ‘other’. Each tree in the forest is
trained by randomly sampling a diverse set of points Sn from
the training frames. Each decision tree is trained recursively,
with the split function and threshold at each node chosen to
split the data reaching that node as “purely” as possible such
that points belonging to the same class are sent to the same
child node. The impurity of a split is measured using the Gini
measure:

i(Sn) = 1 −
∑

l

p(l|Sn)2, (2)

where p(l|Sn) is represented by a histogram of the dataset Sn

over possible labels l at node n. The Gini impurity is chosen
for its efficient implementation compared to e.g. informa-
tion gain. We experimentally confirmed training time to be
1.5 times slower using information gain, with no significant
difference in classification performance. Because there are
many more ‘other’ pixels than ‘joint’ pixels, we balance the
dataset by normalising the number of elements in the bin
labelled l by the total number of elements in the training set
labelled l. The parameters of split nodes are learnt by trying
all possible test functions f (.) and colour posterior types c
for a randomly sampled offset pixel (a, b). The offset pixel
is uniformly sampled within Wq , where q ∈ Sn . The data
entering the node is split into a left subset SL

n if f (.) < υ or
otherwise to a right subset SR

n .
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The drop in impurity is measured as �i(Sn) = i(Sn) −
PLi(SL

n ) − (1 − PL)i(SR
n ), where PL is the fraction of data

points that go to the left set. In each case the threshold value υ

is chosen to maximise �i(Sn). The whole process is repeated
k times (we use k = 200) and the set of parameters which
maximise �i(Sn) overall is chosen as the winning decision
function. This process is recursively repeated for all nodes. A
node is declared a leaf node, and not split further, when (i) the
maximum depth limit D of the tree has been reached or (ii) the
node is pure i.e. all points reaching the node have the same
class label. A per-leaf probability distribution pt (l|Wq) is
stored at the leaf node, represented as a normalised histogram
over the labels of all data points reaching the node.

3.2 Assigning Joint Locations

A location for the joint l is found by using the output of the
random forest p(l|Wq) and estimating the density of joint
proposals using a parzen-window kernel density estimator
with a Gaussian kernel. The position of maximum density is
used as the joint estimate.

See Fig. 20 for an illustration of this method and compar-
ison against ground truth.

4 Pose Evaluator

At this point our joint predictor outputs joint estimates for
each frame of the video. However, the predictions are pro-
vided “as is”, without an indication of whether they are cor-
rect or not. Therefore, in the spirit of Jammalamadaka et al.
(2012) we train an evaluator that indicates whether a pose is
correct or not. We accomplish this by analysing the failure
cases and developing scores for predicting when the failures
occur.

As pointed out in the introduction, we are blessed with a
near-infinite amount of sign language interpreted TV broad-
casts. Therefore, if necessary, frames for which pose esti-
mates fail could be discarded with little loss. Detecting fail-
ures is hence particularly useful in our application, as with a
fully functioning evaluator we could obtain near-perfect pose
estimates for large parts of our videos. These joint estimates
can then, in turn, be used to obtain accurate sign-video pairs
for training a supervised sign language classifier (Buehler
et al. 2010). From the perspective of the next stage in our
pipeline [automatically extracting signs (Pfister et al. 2013)]
where the pose estimation results will be used, the fact that
the pose estimates for certain signs will be consistently incor-
rect, and therefore discarded by the evaluator, is very helpful,
as we do not want to attempt to extract signs with incorrect
pose estimates.

Figure 6 shows the main causes of failure: frames where
the segmentation is faulty (≈ 80 % of errors), and where

(b)(a)

Fig. 6 Typical pose estimation errors. a Frames with segmentation
failures, with the failed segmentation (left) and failed pose estimate
(middle). b Frames where the left and right hands are confused. Poses
estimates are illustrated with a colour coded skeleton

the left and right hand are confused (≈ 5 % of errors). The
approach here will be to develop separate methods for detect-
ing each of these failures. An SVM is trained to predict failed
frames using the output of these methods as a feature vector.
The classifier yields a simple lightweight evaluator that pre-
dicts whether the pose is correct or incorrect. The features for
the classifier are discussed in Sects. 4.1 and 4.2, and details
on the SVM that combines the features are given in Sect. 4.3.

4.1 Feature 1: Segmentation Score

The segmentations are generally fairly robust. However,
occasionally they either oversegment or undersegment the
foreground due to a similar foreground and background or
due to face detection failures. This in turn results in wrong
joint assignments.

One obvious way to detect failures is to compare the seg-
mentations to ground truth segmentation masks. However,
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this would require significant manual labelling work which
our automated joint detector was designed to avoid in the
first place. Instead, we exploit our joint estimates by render-
ing a partial silhouette (Fig. 7a). This is done by rendering a
rectangular binary mask for each limb given joint locations.
Rectangles covering the head and arms are added accord-
ing to the joint positions, and a rectangle covering the torso
is added based on the shoulder positions. The partial sil-
houette can then be compared to the segmentation from the
co-segmentation algorithm as shown in Fig. 7b, resulting in
scores such as those in Fig. 8.

(a) (b)

Fig. 7 Segmentation score for evaluator. a The silhouette (red boxes)
rendered based on estimated joint positions. b The segmentation (black),
rendered silhouette (yellow) and their overlap (red) which is used as a
segmentation score (Color figure online)

Several segmentation scores are computed based on the
output of this rendering. First, we compute a standard overlap

score o = T
⋂

A
T

⋃
A for comparing the two silhouettes, where T

is rendered partial silhouette and A is the mask generated by
the co-segmentation algorithm (Fig. 9). Second, a Chamfer
distance between the silhouettes is also computed, yielding
a measure of the similarity of the shapes of the silhouettes.
Third, statistics based on the size of the segmentation are
computed. These include absolute mask size ‖A‖, difference
between mask size and median mask size over all frames
‖M‖: � = ‖A‖−‖M‖

‖M‖ , � re-computed with temporally local
medians, and differences between different �’s. These scores
form the first part of the feature vector for the evaluator clas-
sifier.

4.2 Feature 2: Mixed Hands

Another common error case is when the left and right hand are
confused with each other, i.e. the left hand is connected to the
right elbow and/or vice versa. In order to catch these failures
we train a classifier with local histogram of oriented gradients
(HOG) Dalal and Triggs (2005) features to detect correct
and incorrect assignments. The tracking output from Buehler
et al. (2011) is used as manual ground truth. The examples are
clustered with K-means according to the hand-elbow angle
and hand position into 15 clusters. One SVM is trained for

Fig. 8 Examples of frames with different segmentation overlap scores. The masks show the segmentation (black), rendered silhouette (yellow)
and their intersection (red) (Color figure online)
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Fig. 9 Training the hand mixup detector. The evaluator is trained on HOG feature vectors placed in the middle of the correct and incorrect positions
of the lower arm. Feature vectors are clustered into separate SVMs based on the hand-elbow angle and hand position

HOG

Select cluster
based on arm angle & position

SVM
for that cluster

Segmented input frames

Output
Success / fail

+ score

Fig. 10 Testing the hand mixup detector. The SVM trained on a cluster
whose centroid best represents the predicted joints is chosen to evalu-
ate the HOG feature vector placed in the middle of the hand and elbow

positions. This SVM outputs a failure score which the evaluator exploits
as a feature for predicting whether the pose estimate is successful or
failed

each cluster as shown in Fig. 9. The HOG is computed in the
middle of the lower arm. At test time, as shown in Fig. 10,
predicted joints are assigned to the nearest cluster centroid
based on hand-elbow angle and hand position. The SVM for
this cluster is evaluated and the output score forms the second
part of the feature vector for the evaluator classifier.

4.3 Evaluator: Uses the Above Features

The above features are then used to train an evaluator, which
classifies the body pose estimate of each frame as either suc-
cess or failure. Once the evaluator has been trained, at testing
time frames classified as failures are discarded. Section 5.3
provides results without discarding frames, and Sect. 5.4 pro-
vides results with failed frames discarded.

To this end we train an SVM with a Chi-squared ker-
nel based on the the above two feature sets (9 scores for
segmentation—1 overlap score, 1 Chamfer score and 7 size
statistics; and 1 score from the mixed hand classifier). An
increase in accuracy was observed after adding each feature.
The joint tracking output from Buehler et al. (2011) is used
to automatically label the training set. This yields a simple
lightweight evaluator (with a feature vector of dimension 10)
that predicts whether the pose is correct or incorrect.

5 Experimental Results

First an overview of the dataset and evaluation criteria
is presented (Sect. 5.1); then the performance of the co-
segmentation algorithm, joint position estimator and pose
evaluator are assessed (Sects. 5.2–5.4), and finally the com-
putation time of the methods is discussed (Sect. 5.5). Sample
videos demonstrating the methods, and a subset of the train-
ing data and annotations, are available online.1

5.1 Dataset and Evaluation Measure

Our dataset consists of 20 TV broadcast videos, each of which
is between half an hour to one and a half hours in length. Each
video typically contains over 40K frames of sign-interpreted
video content from a variety of TV programmes. All frames
of the videos have been automatically assigned joint labels
using a slow but reliable tracker by Buehler et al. An example
frame from each of the videos is shown in Fig. 11.

1 http://www.robots.ox.ac.uk/~vgg/research/sign_language
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0 20 40 60 80 100 120 (px)

Fig. 11 Visualisation of complete dataset showing one example frame
per video. Videos are split into training, validation and testing sets.
Variation in terms of signer identity, clothing and background video
content is ensured in the training set by using different videos and only
duplicating signers if they are wearing different clothing. The testing

set contains completely different signers than those present in the train-
ing or validation sets. Frames with black dashed border indicate those
videos used for the Random Forest experiments in Sect. 5.3.1. A scale
bar is provided in the top left hand corner image to compare pixel
distance with signer size

5.1.1 Split into Training/Validation/Testing Sets

The full set of 20 videos from our dataset are used. They
are split into three disjoint sets: 10 videos for training,
5 for validation and 5 for testing as shown in Fig. 11. Para-
meters are optimised on the validation set, and the testing
set is reserved solely for examining the performance of our
system at test time. All videos are recorded using one of 9
different signers. The training and validation set contain five

different signers and the testing set another four different
signers. Splitting the data this way maintains enough diver-
sity for training but also ensures fairness as the testing set
contains completely different signers than the training and
validation sets. We maximise the variation in appearance of
signers in the training set by only duplicating signers if they
are wearing different clothing. Moreover, signers in the val-
idation set all wear different clothing than those in training
and testing.
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Fig. 12 Scatter plots of stickmen inspired by Tran and Forsyth (2010)
show plots of upper and lower arm placements for every frame in the
training, validation and testing sets. Poses are normalised to the mid-
point between shoulders. Head centre points are rendered as red dots,
right and left upper arms are shown as green and blue lines respec-
tively. Right and left lower arms are shown as yellow and black lines

respectively. Poses are not scale-normalised, meaning scale and loca-
tion variation is directly observable between sets. Top row illustrates
pose outputs from Buehler et al.’s tracker and bottom row is from man-
ual ground truth (GT). Manual GT for the training set is not plotted as
we do not have labels for all videos (Color figure online)

5.1.2 Pose Sampling and Visualisation

Sampling The random forest and evaluator are trained and
tested on frames sampled from each video. Frames are sam-
pled for training by first clustering the training data according
to the signers pose (provided by Buehler et al.’s tracker), and
uniformly sampling frames across clusters. K-means cluster-
ing with 100 clusters is used. Sampling in this way increases
the diversity of poses in the training set. This in turn helps
the forest generalise to testing data and improves accuracy on
unusual poses. For testing and validation videos, 200 frames
containing a diverse range of poses are sampled in the same
way from each of the 5+5 videos (2,000 frames in total).
Sampling the testing data using the same strategy ensures
the accuracy of joint estimates are not biased towards poses
which occur more frequently, e.g. “resting” poses between
signs.

Visualisation A scatter plot of stickmen Tran and Forsyth
(2010) is shown in Fig. 12, illustrating upper and lower arm
placements for every frame in the training, validation and
testing sets. Poses are normalised to the mid-point between
shoulders. A wide coverage of different poses obtained from
Buehler et al.’s tracker are observed in the training set. Also
illustrated are scatter plots for validation and testing sets

comparing Buehler et al.’s tracker with manual ground truth.
According to Buehler et al.’s tracker, poses in testing frames
cover a similar space of poses as in training frames. This
demonstrates the effectiveness of our frame sampling method
at sampling a diverse range of poses. Comparing scatter plots
from manual ground truth with Buehler et al.’s tracker, one
can also observe that errors in Buehler et al.’s tracker do make
the span of poses look slightly larger.

5.1.3 Ground Truth Labelling

The 200 sampled frames with diverse poses from each of
the videos in the validation (5 videos) and testing (another 5
videos) set are manually annotated with joint locations (2,000
frames in total). The validation frames are used for parameter
optimisation, and the testing frames are used for evaluating
the joint estimates.

5.1.4 Evaluation Measure

In all joint estimation experiments we evaluate the perfor-
mance of the system by comparing estimated joints against
frames with manual ground truth. An estimated joint is
deemed correctly located if it is within a set distance of d
pixels from a marked joint centre. Accuracy is measured as
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(a) (b) (c)

Fig. 13 Co-segmentation evaluation using overlap score. a Overlap
scores for each test signer; b example of the ground truth trimap (white is
background, grey is foreground and black is unknown); c segmentation
(green) evaluated against the ground truth (magenta and black) (Color
figure online)

the percentage of correctly estimated joints. The experiments
use a distance of d = 5 pixels from ground truth. A scale
superimposed on the top left frame in Fig. 11 shows how
pixel distance relates to signer size.

5.2 Co-segmentation

The co-segmentation algorithm is evaluated in two experi-
ments. The first experiment uses ground truth segmentation
masks to evaluate the quality of segmentations. The second
experiment uses silhouettes rendered based on ground truth
joint locations as described in Fig. 7.

5.2.1 Experiment 1: Overlap of Foreground Segmentation
with Ground Truth

In this experiment the segmentation masks are compared
against manual foreground segmentation ground truth. This
ground truth consists of manually labelled foreground seg-
mentation trimaps for 20 frames for each of the five test sign-
ers (100 frames in total). The frames are sampled uniformly
from different pose clusters (as described in Sect. 5.1). The
overlap score from Sect. 4.1 is evaluated separately for each
test signer. The mean overlap scores and standard deviations
are given in Fig. 13.

5.2.2 Experiment 2: Overlap of Foreground Segmentation
with Silhouettes Rendered Based on Joints

In this experiment an overlap score is computed by render-
ing rectangles at the manual ground truth joint positions as
shown in Fig. 7. This is done using the frames in the test and
validation sets that have manual ground truth joint locations
(Sect. 5.1 above), and is used for evaluating the quality of seg-
mentations for the evaluator. Table 1 shows the attained seg-
mentation overlap scores. A perfect overlap is not expected
since the rendered rectangles are only approximations to the
true ground truth segmentation. However, as demonstrated
in Fig. 8, the overlap score still gives a useful indication of

Table 1 Co-segmentation evaluation using overlap of segmentation
and rendered silhouette

Data subset Avg overlap score Standard deviation

Test set 0.8628 0.0503

Validation set 0.8542 0.0637
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Fig. 14 Cumulative distribution function of segmentation overlap
scores

whether the segmentation is good or not. Figure 14 shows the
cumulative distribution function of the overlap scores over
the test and validation sets. It can be observed that the major-
ity of scores are in the range 0.85–0.95, with no scores below
0.4 or above 0.95, and a small proportion of scores between
0.6 and 0.8. This demonstrates that the segmentation quality
score used for the evaluator is fairly accurate.

5.3 Random Forest Regression

The joint estimation method is evaluated in four experiments:
(i) Frame representation, which explores alternative inputs
for the forest and demonstrates the effectiveness of using
a segmented colour posterior image (obtained through co-
segmentation) over using other simple representations. (ii)
Parameter optimisation, which observes the effect of vary-
ing the most influential parameters of the random forest.
(iii) Increasing training data, where the performance of the
random forest is analysed as the amount of training data is
increased. (iv) Random forest versus state-of-the-art, where
our joint estimation method is pitched against Buehler et al.’s
tracker, and pose estimation method of Yang and Ramanan
(2011) which uses a mixture of parts.

5.3.1 Experiment 1: Frame Representation

Frames of the videos are represented in one of four different
ways: (i) a raw colour pixel representation in LAB (LAB),
(ii) colour posterior on the whole image (CP), (iii) signer sil-
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Fig. 15 a Example frames
showing different methods for
representing a frame. b Average
accuracy of single-signer and c
multi-signer forests as allowed
distance from ground truth is
increased. Results for forests
trained and tested on different
types of frame representation are
shown. Using SEG+CP proves
best for both single-signer and
multi-signer forests
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Table 2 Average accuracy of per-joint estimates for single-signer forests measured as 5 pixels from manual ground truth. Using Seg+CP outperforms
all other input types

Method Head R Wrist L Wrist R Elbow L Elbow R Shldr L Shlder Average

LAB 98.0 63.9 85.8 67.6 79.2 87.4 86.1 81.1

CP 97.7 70.3 82.9 67.9 70.0 84.3 72.6 78.0

S 91.9 22.2 30.8 67.8 78.8 82.2 89.0 66.1

Seg + CP 97.6 64.9 84.1 72.5 80.2 86.8 92.0 82.6

Buehler et al. (2011) 96.4 58.8 66.0 67.6 71.5 83.1 83.7 75.3

Bold values indicate frame representation with highest accuracy

houette (S), and (iv) segmented colour posterior (Seg+CP),
produced through co-segmentation (examples showing each
type are shown in Fig. 15a). In this experiment we ascer-
tain the optimal frame representation for producing the most
accurate joint estimates. The experiment is conducted in two
settings: (1) training and testing on the same signers, as
reported by Buehler et al. (2011), and (2) training on mul-
tiple signers and testing on an unseen signer. This second
experiment quantifies the generalisation performance of the
forest as the frame representation is altered.

Protocol A sample of five videos from our set of 20 are used
in this experiment. Example frames (indicated by a dashed
black border) from each of these videos are shown in Fig. 11.
We split these videos into two sections: the first 60 % of
the video is used for training and the remaining 40 % is
used for testing. Five different single-signer forest are trained
and tested on each video separately. The data used to train
each tree is formed by sampling labelled pixels from the
training videos. First 500 diverse frames are sampled and then
500 pixels per frame are chosen (all 91 joint pixels and 409
randomly sampled background pixels). Multi-signer forests
are evaluated using fivefold cross validation on videos of 5
different signers, where the RFs are trained on 4 videos and
evaluated on a 5th “held-out” video. The data used to train
each tree is formed by sampling 1,000 frames across all 4
videos (250 diverse frames per video) and then 500 pixels
from each frame.

Results Figure 15 shows average joint estimation accu-
racy for both single-signer and multi-signer forests as the
threshold on allowed distance from manual ground truth is
increased. For single-signer forests SEG+CP is on a par with
an LAB frame representation, and both perform well. How-
ever, for multi-signer forests it can be noticed that using LAB
does not generalise well, and performs the worst. On the other
hand, SEG+CP maintains best performance in both cases.

CP loses accuracy when going from the single-signer case
to a multi-signer case. The failures are due to changes in
background video content neighbouring the right joints of
the signer. Tables 2 and 3 show the average accuracy per
joint for single-signer and multi-signer forests respectively,
using an allowed distance from ground truth of d = 5 pix-
els. In the case of CP there is only a small drop in left-wrist
accuracy between the multi-signer and single-signer forests.
This is due to the left wrist being shielded from the dynamic
background by the signers largely unchanging body appear-
ance.

Removing the background content and using SEG+CP
allows the forest to learn a more refined appearance of body
joints and boost detection accuracy by reducing the influ-
ence of noise. However, the method is left at the mercy of
the background removal procedure. One such failure case
for SEG+CP occurs when the segmentation cuts off a hand
confusing it for background content, causing CP to out-
perform SEG+CP for the right-wrist in the single-signer
case.
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Table 3 Average accuracy of per-joint estimates for multi-signer forests trained and tested on a subset of the dataset as described in Sect. 5.3.2.
Estimates are deemed correct if they are within 5 pixels of manual ground truth

Method Head R Wrist L Wrist R Elbow L Elbow R Shldr L Shlder Average

LAB 56.8 7.6 14.8 22.8 37.4 36.8 47.8 32.0

CP 93.8 52.9 80.4 30.8 62.1 75.7 79.4 67.9

S 88.4 15.6 18.4 59.8 78.6 85.0 91.4 62.5

Seg + CP 95.0 60.3 80.0 57.3 63.4 88.0 94.5 76.9

Buehler et al. (2011) 96.4 58.8 66.0 67.6 71.5 83.1 83.7 75.3

Bold values indicate frame representation with highest accuracy

The next experiment explores parameter tuning for the
SEG+CP frame representation. We discover the effect for-
est parameters have on accuracy when using a large train-
ing set with more variation in both appearance and signers
poses.

5.3.2 Experiment 2: Parameter Tuning

This experiment fully analyses the effect tree depth, number
of trees in the forest and size of the sliding window have on
joint estimation accuracy, and the sorts of parameter settings
one should expect to use for optimal performance. Only one
parameter is analysed at a time with the remaining fixed.
Fixed values used are a tree depth of 32, sliding window
width of 71 pixels and a forest of 8 trees.

Protocol Multi-signer forests are trained using all 10 train-
ing videos. Training data for each tree is formed by sam-
pling as described in Sect. 5.1 from each video and sampling
700 pixels per frame (91 joint pixels + 609 background pix-
els) amounting to 3.5 million data points per tree. Forests
are retrained for each parameter setting and tested on 1,000
ground truth frames in the validation set.

Results: Tree Depth Figure 17a–c shows the effect tree
depth, number of trees in forest and sliding window width
have on the joint estimation accuracy respectively. Accuracy
per joint, averaged over left and right body parts, is plotted.
In Fig. 17a a steady increase in accuracy is observed as tree
depth increases from 4 to 32. Beyond depth 32 the accuracy
starts dropping. This drop in accuracy is due to overfitting
and occurs for all but the wrist joints as depth is increased
further. For wrists an optimal depth at 64 is found, imply-
ing the wrists’ appearance and context are much more varied
than other body joints, with classification requiring many
more tests. This result also suggests that a single class forest
per joint, optimised with different parameter settings, may
produce better overall accuracy.

Figure 16 visualises the output joint distributions (see joint
colour key in Fig. 16a) as tree depth is increased. With low
depth the forest generally splits large portions of the image

(a) (b) (c)

(d) (e) (f)

Fig. 16 Visualisation of forest output when applied to example input
frame (b). The output confidence map per joint label as tree depth
increases from 4 to 32 is shown in c–f. Higher intensity colour implies
higher probably of a joint label—key shown in (a) (Color figure online)

into probable joint labels. Joint confidences are weak and
‘wash’ together. As tree depth increases, confidences become
higher for a particular spatial location.

Results: Number of Trees For all joints, adding more trees
to the forest produces higher accuracy. Up to 8 trees were
tested and the plot in Fig. 17b indicates more trees could
further improve performance.

Results: Window Width The forest draws tests from within a
sliding window centred on the pixel that is being classified.
By adjusting the size of the sliding window one can con-
trol the amount of context used for classification. Context is
important because it provides information about the relative
placement of body joints, such as that shoulders are found
below the head. The plot in Fig. 17c reveals an increase in
accuracy as window width size is increased from 31 to 71 pix-
els. A decline in accuracy is observed as the window width
is increased further. There are two possible reasons for this
behaviour: (1) There are not enough test samples being drawn
as the window width is increased past 71 pixels. (2) Over-
fitting occurs and a prior on the types of pose seen during
training is being learnt.

123



Int J Comput Vis

Fig. 17 Accuracy of random
forest as a tree depth, b number
of trees in forest and c sliding
window width are adjusted
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Fig. 18 Forest performance as amount of training data is increased.
Results on validation set and testing set are shown

5.3.3 Experiment 3: Increasing Training Data

This experiment tests the intuition that more training data
will improve generalisation of the forest and hence increase
the accuracy of joint estimates.

Protocol Multiple forests are trained, each using a sample
of 2 videos from the set of 10 training videos. The SEG+CP
frame representation and multi-signer forests are used. Forest
parameters are optimised by maximising the average forest
accuracy when applied to the 1,000 ground truth frames in
the validation set. This process is repeated for a sample of
4, 6, 8 and 10 training videos. The number of forests trained
for each sample size is proportional to the total number of
possible sample combinations (where the proportion con-
stant is 1

21 ). E.g. for a sample size of 4 videos, we average

over
⌈(

10C4
)
/21

⌉ = 10 videos. For a sample size of 2, 4,
6, 8 and 10 videos, we averaged over 3, 10, 10, 3 and 1
forest(s) respectively. Finally we also train a forest with 15
videos using the testing and validation sets combined. For
this forest, we are not able to tune parameters due to a lim-
ited number of available videos. We therefore fix them at
the optimal parameters found when training with 10 videos.
Seven hundred pixels per frame are sampled from 500 diverse

frames extracted from each of the sampled videos. All forests
are tested on 1,000 ground truth frames from videos in the
testing set.

Results Figure 18a shows the average accuracy achieved by
forests on the validation set. For all joint types we observe a
general increase in accuracy as more training data is added.
The same trend is observed when applying these forests to
unseen signers in the testing set as shown in Fig. 18b. Of
particular interest is the drop in accuracy of the shoulder
joints when going from 8 to 10 videos. We believe this is
due to a particular video having noisy segmentations on the
signer’s left shoulder. It can also be noticed that elbows have
higher accuracy than wrists in the validation set, but vice
versa on the testing set. This is due to more segmentation
errors at elbow locations in the testing videos.

5.3.4 Random Forest Versus State-of-the-Art

In this experiment the random forest is compared to Buehler et
al.’s tracker and the deformable part based model by Yang
and Ramanan (2011).

Protocol The forest is trained on the full 15 video training
set. The optimal parameters from Sect. 5.3.2 are used, i.e. a
tree depth of 32, window size of 71 and 8 trees. The model
by Yang and Ramanan (2011) is trained for two different
types of video input: (1) The original RGB input, and (2) an
RGB input with the background content removed by setting
it to black. For both types of input the full 15 video dataset
is used for training. From each video 100 diverse training
frames were sampled, totaling 1,500 frames. Model parame-
ters were set the same as those used for upper body pose
estimation in Yang and Ramanan (2011). Negative training
images not containing people were taken from the INRIA
dataset. Testing for all three upper body pose estimators is
conducted on the full 5 video testing set.

Results Figure 19 shows accuracy as the allowed distance
from ground truth is increased. The head accuracy and aver-
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Fig. 19 Comparison of joint tracking accuracy of random forest trained on 15 videos against Buehler et al.’s tracker and Yang and Ramanan’s
pose estimation algorithm. Plots show accuracy per joint type (averaged over left and right body parts) as allowed distance from manual ground
truth is increased

Table 4 Average accuracy of per joint estimates on the full 5 video testing set. Estimates are deemed correct if they are within 5 pixels of manual
ground truth

Method Head R Wrist L Wrist R Elbow L Elbow R shldr L Shlder Average

Yang and Ramanan
(2011) input 1

73.1 39.4 46.4 38.8 44.5 57.8 76.2 53.7

Yang and Ramanan
(2011) input 2

59.3 28.3 39.6 15.2 19.1 46.4 18.7 32.4

Buehler et al. (2011) 97.0 53.9 70.6 41.6 60.2 73.8 75.1 67.5

Random forest 93.9 59.5 71.6 58.8 67.5 80.1 93.0 74.9

Bold values indicate method with highest accuracy

age accuracy over left and right joints are plotted. For all
joints but the head, the forest consistently performs better
than Buehler et al.’s tracker. For the wrists and shoulders,
erroneous joint predictions by the forest are further from the
ground truth than erroneous predictions from Buehler et al.’s
tracker once joint predictions are at least ≈ 10 pixels from
ground truth. This fact means that it is likely to be easier for
a pose evaluator to detect errors made by the forest. Inter-
estingly, the model by Yang and Ramanan (2011) achieved
best performance when using the original RGB video input
(input 1) over using a background removed version (input 2).
We suggest that this is due to a poor representation of negative
image patches in input 2 when using negative training images
from the INRIA dataset. Overall, Yang and Ramanan’s model
is the least accurate over all joint types.

Table 4 shows per joint accuracy for Buehler et al.’s tracker
and the forest using an allowed distance from ground truth
of d = 5 pixels. The forest performs best with an average
accuracy of 74.9 %. This suggests noisy data from Buehler et
al.’s tracker is smoothed over by more consistent data at the
leaf nodes of the trees. Results for the forest on an exam-
ple 5 frames from the testing set is shown qualitatively in
Fig. 20.

5.4 Pose Evaluator

The pose evaluator is assessed here on the ability to label joint
predictions per frame as either success or fail. The quality of

joint predictions on success frames is also used as a measure
of the evaluator’s performance.

Protocol The evaluator is trained on the validation set and
tested on the test set shown in Fig. 11. For training, the joint
tracking output from Buehler et al. (2011) is used to auto-
matically label poses for a set of training frames as success or
fail. For testing, the 1,000 frames with manual ground truth
(described in Sect. 5.3.2) are used.

Results: Choice of Operating Point Figure 21a shows the
ROC curve of the evaluator when varying the operating point
(effectively changing the threshold of the SVM classifier’s
decision function). This operating point determines the sen-
sitivity at which the evaluator discards frames. The optimal
operating point occurs at a point on the curve which best
trades off false positives against true positives. This is a point
closest to the top left hand corner of the plot. To gain further
insight into the effect of the operating point choice on joint
estimates, we plot this value against joint prediction accuracy
in Fig. 21b. This illustrates the correlation between the SVM
score and percentage of frames that the evaluator marks as
successes (i.e. not failures). One can observe that when keep-
ing the top 10 % frames, a 90 % average accuracy could be
attained. More frames can be kept at the cost of loss in aver-
age accuracy. The bump at 0.8 suggests that at a particular
SVM score, the pose evaluator begins to remove some frames
which may not contain a higher degree of error compared to
frames removed with a higher SVM score threshold. How-
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Fig. 20 Joint estimation results. Left shows colour model images, from
which we obtain probability densities of joint locations shown on top
of the colour model edge image in centre. Different colours are used
per joint (higher intensity colour implies higher probability). Maximum

probability per joint is shown as grey crosses. Right shows a comparison
of estimated joints (filled in circles linked by a skeleton are) overlaid on
faded original frame, with ground truth joint locations (open circles)
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Fig. 21 Pose evaluator classification performance. a ROC curve of
the evaluator. b Change in accuracy as a function of the percentage of
frames left after discarding frames that the evaluator detects as failures.
For b the accuracy threshold is set as 5 pixels from manual ground truth
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Fig. 22 Average accuracy of per-joint estimates without (left) and with
(right) evaluator when the operating point of the pose evaluator is set
to the optimum in Fig. 21a

ever, in general there is a positive correlation between the
SVM score and pose estimation accuracy.

Results: Joint Localisation Figure 22 demonstrates the
improvement in joint localisation obtained by discarding
frames that the evaluator classifies as failed. This yields an
8.5 % increase in average accuracy (from 74.9 to 83.4 %) at
a maximum distance of 5 pixels from ground truth, with 40.4
% of the test frames remaining. One can observe a particu-
larly significant improvement in wrist and elbow localisation
accuracy. This is due to a majority of hand mixup frames
being correctly identified and filtered away. The improve-
ments in other joints are due to the evaluator filtering away
many frames where joints are assigned incorrectly due to
segmentation errors.

Results: Pose Visualisation A scatter plot of stickmen for
the forest joint predictions are plotted on all test frames in
Fig. 23a. Sticks are marked as orange if the elbow or wrist

(a) (b)

Fig. 23 a Shows scatter plots of stickmen for pose estimates from
forest on all training data. b Shows scatter plot of pose estimates from
forest on training data marked as containing good poses by the evaluator.
Elbow and wrist joints greater than 5px from ground truth are indicated
by orange sticks (Color figure online)

joints are more than 5 pixels from ground truth. One observes
erroneous joint predictions tend to exaggerate the length of
upper arms. Typically wrist joint errors occur when the wrists
are further away from the torso centre. Figure 23b shows the
same plot as in Fig. 23a but only on testing frames marked
as successful by the evaluator. Notice the evaluator has suc-
cessfully removed errors on the elbows and wrists while still
retaining the majority of the correct poses.

5.5 Computation Time

The following computation times are on a 2.4 GHz Intel Quad
Core I7 CPU with a 320 × 202 pixel image. The computa-
tion time for one frame is 0.14 s for the co-segmentation
algorithm, 0.1 s for the random forest regressor and 0.1 s for
the evaluator, totalling 0.21 s (≈ 5fps). Face detection Zhu
and Ramanan (2012) takes about 0.3 s/frame for a quad-
core processor. The per-frame initialisation timings of the
co-segmentation algorithm are 6 ms for finding the dynamic
background layer and static background, 3 ms for obtaining
a clean plate and 5 ms for finding the image sequence-wide
foreground colour model, totalling 14 ms (approx. 24 min
for a 100 K frames). In comparison, Buehler et al.’s method
runs at 100 s per frame on a 1.83 GHz CPU, which is two
orders of magnitude slower. Each tree for our multi-signer
RFs trained with 15 videos takes 20 h to train.

6 Conclusion

We have presented a fully automatic arm and hand tracker that
detects joint positions over continuous sign language video
sequences of more than an hour in length. Our framework
attains superior performance to a state-of-the-art long term
tracker Buehler et al. (2011), but does not require the man-
ual annotation and, after automatic initialisation, performs
tracking in real-time on people that have not been seen dur-
ing training. Moreover, our framework augments the joint
estimates with a failure prediction score, enabling incorrect

123



Int J Comput Vis

poses to be filtered away. Future work includes improving
the evaluator by adding new features, and using its output
not only as an indication of failure but also as an evaluation
measure to help correct failed poses.
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